Date： $24^{\text {th }}$ May 2024
Secretary，Town Planning Board 15／F，Nörth Point Government Offices 333 Java Road，North Point，Hong Kong

Dear Sir／Madam，

SECTION 16 APPLICATION TOWN PLANNING ORDINANCE（CHAPTER 131）

SUBMISSION OF APPLICATION FOR PERMISSION UNDER SECTION 16 OF THE TOWN PLANNING ORDINANCE（CAP．131）FOR PROPOSED EXHIBITION HALL AND SHOP AND SERVICES IN＂OTHER SPECIFIED USES＂ANNOTATED＂PIER＂ ZONE，PREMISES AT UPPER DECK，HUNG HOM（NORTH）FERRY PIER，HUNG HOM

Planning Application No．A／K9／287
 Further Information（2）－Technical Clarifications

Reference is made to the captioned Section 16 planning application．In order to address the departmental comments of Architectural Services Department（ASD），Civil Engineering and Development Department（CEDD）and the Planning Department（PlanD）regarding the captioned application，attached please find the table of responses－to－comments（ R to C ）and the updated Structural Proposal（Annex 1 refers）．No in－principle comment or no comment has been obtained from ASD and CEDD respectively before this submission．（Annex 2 refers）

Please be advised that this $\mathrm{Fl}(2)$ should be exempted from the publication requirement and／or the recounting requirement in accordance with TPB PG－No．32B due to the following reasons：
－The updated Structural Report is a technical clarification／response to comments of relevant Government department without changing the nature of the application，the proposed uses nor the proposed scheme；
－The updated Structural Report relates to aspects of ancillary utility installation；and
－The updated Structural Report does not involve major changes in the assumptions and methodologies，findings and proposed mitigation measures．
－The responses to PlanD involves technical clarifications only．
Should you have any queries，please feel free to contact Mr．Endy CHENG at 24933626 or myself at 35906333.

Yours faithfully，
FOR AND ON BEHALF OF
DeSPACE（INTERNATIONAL）LIMITED

Greg Lam

Section 16 Application for Proposed Exhibition Hall and Shop and Services in "Other Specified Uses" annotated "Pier" Zone, Premises at Upper Deck, Hung Hom (North) Ferry Pier, Hung Hom

Town Planning Application No. A/K9/287
 (Further Information 2)

Response-to-Comment Table (Departmental Comments)

Departmental Comments	Response
Email dated 29 April 2024 refers: Property Services Manager/Kowloon City \& Sai Kung, Architectural Services Department	
Please be advised our comments on maintenance aspect of the concerned existing building structure under ArchSD's ambit arisen in consideration of the proposed works as follows:	
1. Refers Appendix 2 Structural Proposal under the Document Section 16 Town Planning Application Supplementary Planning Statement Item III Design Data, design loads including the weight and operation load of the proposed pump, design imposed load for the proposed floor usages e.g. Sprinkler Pump Room, "Exhibition Hall / Shop and Services", etc. shall be clarified. In Appendix A Calculations, the adopted "self-weight of the slab" of 10.0 kPa per storey shall be substantiated with breakdown calculations;	Please note that design loads including the weight and operation load of the proposed pump, design imposed load for the proposed floor usages, Sprinkler Pump Room, "Exhibition Hall / Shop and Services", etc. are clarified in the updated Structural Proposal. For the adopted "self-weight of the slab" of 10.0 kPa per storey, according to the available structural record plans, - Deck Floor slab has a thickness of 200 mm ($s / w=0.2 * 24.5=4.9 \mathrm{kPa}$) ; - Upper Deck Floor slab has a thickness of 175 mm ($\mathrm{s} / \mathrm{w}=0.175^{*} 24.5=4.29 \mathrm{kPa}$) ; - R/F slab is a thickness $150 \mathrm{~mm}\left(\mathrm{~s} / \mathrm{w}=0.15^{*} 24.5=3.675 \mathrm{kPa}\right)$
2. Structural implication (e.g. the adopted finishes and partition load, etc.) for the proposed works of the concerned areas shall be assessed and clarified;	The finish load and service load of the proposed works of the concerned areas have been specified in the updated Structural Proposal.
3. Schematic structural drawings shall be included e.g. layout and details of the proposed works, connection details between the proposed works and the existing structure, etc;	Schematic structural drawings are included in Appendix C.

Section 16 Application for Proposed Exhibition Hall and Shop and Services in "Other Specified Uses" annotated "Pier" Zone, Premises at Upper Deck, Hung Hom (North) Ferry Pier, Hung Hom
4. The structural drawings and report shall be endorsed by a Registered Structural Engineer;
6. The applicant shall be responsible for design, planning, construction, supervision of proposed works and reinstate all affected area and waterproofing layer up to the Government's satisfaction;
7. The applicant shall submit detailed layout and proposal of the proposed exhibition hall and shop and services for further comment before conducting any alteration/ addition/ improvement works to the venue. The applicant shall ensure the alteration/ addition/ improvement works shall comply all relevant statutory requirements;
8. The applicant shall clarify if future maintenance of the completed works shall be undertaken by the applicant at his own expenses.

Please note that the updated Structural Proposal has been endorsed by a Registered Structural Engineer.

Noted with thanks. The applicant will be responsible for design, planning, construction, supervision of proposed works and reinstate all affected area and waterproofing layer up to the Government's satisfaction.

Noted with thanks. The applicant will submit detailed layout and proposal of the proposed exhibition hall and shop and services to your department for further comment before conducting any alteration/ addition/ improvement works to the venue. The applicant shall ensure the alteration/ addition/ improvement works shall comply all relevant statutory requirements.

The future maintenance of the completed works will be undertaken by the applicant at his own expenses.

Departmental Comments
 Email dated 6 May 2024 refers:
 Senior Property Services Manager/Kowloon City \& Sai Kung,
 Architectural Services Department

(5) Noted Para. 1 in PlanD's memo dated 10.4.2024 the "... structural proposal for the additional structures (i.e. two sprinkler water tanks and a sprinkler pump room) for the proposed sprinkler system at the roof of the subject pier ..." which will affect the existing foundation of the Pier.

Response

Results of the updated Structural Proposal confirm that the bearing capacity of all structural members, including the existing substructure of the Pier, are capable of supporting the new loading from the proposed water tanks in compliance with the requirements. The proposed addition of water tanks on the roof is structurally feasible.

Section 16 Application for Proposed Exhibition Hall and Shop and Services in "Other Specified Uses" annotated "Pier" Zone, Premises at Upper Deck, Hung Hom (North) Ferry Pier, Hung Hom

Departmental Comments	Response		
Email dated 6 May 2024 refers: Chief Engineer/Port Works, Civil Engineering and Development			
Department	Please ask the consultant to confirm that the proposed sprinkler system at the application premises with ancillary water tanks and pump room at the roof of the subject pier will not cause any adverse impact to the structural integrity and stability of the substructure of the pier.		Results of the updated Structural Proposal confirm that the bearing
:---			
capacity of all structural members, including the existing substructure			
of the Pier, are capable of supporting the new loading from the			
proposed water tanks in compliance with the requirements. The			
proposed addition of water tanks on the roof is structurally feasible.			

Departmental Comments	Response
Email dated 24 May 2024 refers:	
According to Para. 4.4 of the Planning Statement, a passenger path will be reserved for passengers' circulations should the upper deck is required to be resumed for embarking and disembarking in the future. However, it is noted on Figure 6 that both passengers and visitors of the proposed exhibition hall and shop and services uses under the current application will share the same access under this situation. Please clarify on the followings:	(heng
How will the separate access arrangement between ferry passengers and visitors to the application premises be carried out?	Subject to detailed arrangements at the time when upper deck is required to be used for passengers' circulations, the access arrangements for ferry passengers and visitors of the proposed uses will be separated by differentiated time zones of access. The ferry schedules involving the upper deck and the opening time of the proposed uses will be planned together in due course to ensure an acceptable level of order if such need arises in future. When planning the schedules, the ferry schedules will be prioritized and TD will be consulted.

Section 16 Application for Proposed Exhibition Hall and Shop and Services in "Other Specified Uses" annotated "Pier" Zone, Premises at Upper Deck, Hung Hom (North) Ferry Pier, Hung Hom
2. Will the 'Crowd Management Point/Queueing area' currently The 'Crowd Management Point/Queueing area' currently proposed at proposed at the Lower Deck as shown on Figure 4 be affected? Will it be required to provide a new waiting area for visitors on the Upper Deck?
3. Taking into account the future passengers at the Upper Deck, will it be necessary to reduce the proposed maximum capacities of 100 people at the application premises?
the Lower Deck will be used for crowd management for both ferry passengers and visitors of the proposed uses to ensure an acceptable level of order in accordance with the said access arrangements.

The proposed maximum capacities of visitors at the application premises will be adjusted accordingly, eg. to 60, subject to detailed arrangements in future when such need arises.

Annex 1

Updated Structural Proposal

S．T．Wong \＆Partners Ltd
 Consulting Engineers
 黃成增顧問工程師有限公司

Telephone 2625－1776
Mobile
Facsimile
Address
9320－6580
2467－9618
Flat B， $8 /$ F，Lee May Building， 788－790 Nathan Road，Kowloon，HK九龍彌敦道 $788-790$ 號利美大廈八樓 B 室
Email stwong＠stwong．com．hk
Website
www．stwong．com．hk

PROJECT：

HUNG HOM BAY RECLAMATION PHASE II，HUNG HOM（NORTH）FERRY PIER，HONG KONG

Structural Proposal

May 2024

TABLE OF CONTENTS

1.0 Introduction
2.0 Relevant Regulations and Code of Practice for Checking
3.0 Design Data
4.0 Existing Structural Data
5.0 Conclusions
Appendix A - Water Tank Location
Appendix B - Structural Calculation
Appendix C - Drawings
Appendix D - Record Plan

I. Introduction

This report presents a structural appraisal calculation for addition of a proposed sprinkler water tank and sprinkler pump on the roof floor, and usage changes at G/F \& 1/F (Former MD/F \& UD/F) from Pier deck to exhibition hall of Hung Hom (North) Ferry Pier, Hung Hom, Kowloon, Hong Kong.

II. Relevance Regulations and Code of Practices for Checking

The design of the steel frame under the newly added water tank shall be carried out in strict compliance with, but not limited to the following:

- Hong Kong Building (Construction) Regulation
- Code of Practice for the Structural Use of Steel - 2011
- Code of Practice for Structural Use of Concrete - 2013
- Code of Practice for Dead and Imposed Load - 2011
- Code of Practice on Wind Effects in Hong Kong - 2019

The feasibility study of existing building all structural members shall be carried out in strict compliance with, but not limited to the following:

- Building Construction Regulations
- Code of Practice For Structural Use of Concrete Hong Kong - 1987

III. Design Data

1.1 Dead Load:

Reinforced Concrete Self-weight $=24.5 \mathrm{kN} / \mathrm{m}^{3}$,
Water Density $=10 \mathrm{kN} / \mathrm{m}^{3}$,
Sprinkler Water Tank Self-weight $=2150 \mathrm{~kg}$,
Sprinkler Pumps Self-weight in total= 2600kg,
Finishing at $G / F \& 1 / F=1.5 \mathrm{kPa}$; Service st $\mathrm{G} / \mathrm{F} \& 1 / \mathrm{F}=0.5 \mathrm{kPa}$
1.2 Live Load at G/F \& $1 / \mathrm{F}=5.0 \mathrm{kPa} ; R / \mathrm{F}=2.0 \mathrm{kPa}$
1.3 Wind Pressure: Water Tank $=3.62 \mathrm{kPa}$

Effective height $=13.65 \mathrm{~m}, \mathrm{Qo}, \mathrm{z}=2.08 \mathrm{kPa}, \mathrm{Cp}=2.0, \mathrm{Ss}=1.024, \mathrm{~L}_{0.5 \mathrm{p}}=10$

IV. Existing Structural Data

a). Concrete Grade of structural elements to be designed concrete mix with following minimum strength at 28 days and maximum size of aggregate 20 mm :

Column, wall, beam, slab and staircases - 40MPa
b). All reinforcement bars to be High Yield Steel Bars ,Yield stress $=F y=210 \mathrm{~N} / \mathrm{mm}^{2}$;
c). Concrete Cover:

40 mm above +4.000 Chart Datum (C.D.)
60 mm at or below +4.000 C.D.
75 mm bottom of pile cap unless otherwise specified.
d). All reinforcement to comply with B.S. 4449.
e). Existing Slab Thickness R/F=150mm , Upper Deck level ($1 / \mathrm{F}$) $=175 \mathrm{~mm}$, Main Deck level $(G / F)=200 \mathrm{~mm}$

V. Conclusion

1.In conclusion, the proposed addition of water tanks on the roof is structurally feasible. Steel beams are proposed to transfer the extra load of the water tanks to the columns directly, the existing structures (columns and piles) are capable for supporting the new loading from the proposed water tanks.
2. The conversion of UD/F, MD/F into exhibition halls is structurally feasible

Appendix A
 Water tank location

- The proposed ancillary roof-top ancillary structures do not exceed 3 metres for building with height of not more than 30 metres.
- The proposed roof-top structures shall not be counted towards the height of the buildings for the purpose of BHR under JPN no. 5.

Drawn By EC	Figure No.	FI2-2
${ }^{\text {Date }}$ February 2024	Scale	1:300 in A4

Appendix B
 Structural Calculation

1.0 Loading

2.0 R/F Feasibility calculation of new structure scheme

TABLE: Element Forces - Frames-MB2											
Frame	Station	OutputCase	CaseType	StepType	P	V2	V3	T	M2	M3 FrameElem	ElemStation
Text	m	Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m Text	m
4		ULS	Combination	Max	17.053	2.608	15.711	0.002	0	0 4-1	0
4	0.47692	ULS	Combination	Max	17.053	2.207	13.294	0.002	6.9165	91.7764 4-1	0.47692
4	0.95385	ULS	Combination	Max	17.053	1.806	10.877	0.002	12.6802	168.2567 4-1	0.95385
4	1.43077	ULS	Combination	Max	17.053	1.404	8.46	0.002	17.2912	229.441 4-1	1.43077
4	1.90769	ULS	Combination	Max	17.053	1.003	6.043	0.002	20.7494	275.3292 4-1	1.90769
4	2.38462	ULS	Combination	Max	17.053	0.602	3.626	0.002	23.0549	305.9213 4-1	2.38462
4	2.86154	ULS	Combination	Max	17.053	0.201	1.209	0.002	24.2076	321.2174 4-1	2.86154
4	3.33846	ULS	Combination	Max	17.053	16.036	1.209	0.002	24.2076	321.2174 4-1	3.33846
4	3.81538	ULS	Combination	Max	17.053	48.109	3.626	0.002	23.0549	305.9213 4-1	3.81538
4	4.29231	ULS	Combination	Max	17.053	80.181	6.043	0.002	20.7494	275.3292 4-1	4.29231
4	4.76923	ULS	Combination	Max	17.053	112.253	8.46	0.002	17.2912	229.441 4-1	4.76923
4	5.24615	ULS	Combination	Max	17.053	144.326	10.877	0.002	12.6802	168.2567 4-1	5.24615
4	5.72308	ULS	Combination	Max	17.053	176.398	13.294	0.002	6.9165	91.7764 4-1	5.72308
4		ULS	Combination	Max	17.053	208.471	15.711	0.002	$4.44 \mathrm{E}-14$	8.266E-14 4-1	6.2
4		ULS	Combination	Min	-17.053	-208.471	-15.711	-0.1615	0	04-1	0
4	0.47692	ULS	Combination	Min	-17.053	-176.398	-13.294	-0.1615	-6.9165	-1.1482 4-1	0.47692
4	0.95385	ULS	Combination	Min	-17.053	-144.326	-10.877	-0.1615	-12.6802	-2.1049 4-1	0.95385
4	1.43077	ULS	Combination	Min	-17.053	-112.253	-8.46	-0.1615	-17.2912	-2.8704 4-1	1.43077
4	1.90769	ULS	Combination	Min	-17.053	-80.181	-6.043	-0.1615	-20.7494	-3.4445 4-1	1.90769
	2.38462	ULS	Combination	Min	-17.053	-48.109	-3.626	-0.1615	-23.0549	-3.8272 4-1	2.38462
4	2.86154	ULS	Combination	Min	-17.053	-16.036	-1.209	-0.1615	-24.2076	-4.0185 4-1	2.86154
4	3.33846	ULS	Combination	Min	-17.053	-0.201	-1.209	-0.1615	-24.2076	-4.0185 4-1	3.33846
4	3.81538	ULS	Combination	Min	-17.053	-0.602	-3.626	-0.1615	-23.0549	-3.8272 4-1	3.81538
4	4.29231	ULS	Combination	Min	-17.053	-1.003	-6.043	-0.1615	-20.7494	-3.4445 4-1	4.29231
4	4.76923	ULS	Combination	Min	-17.053	-1.404	-8.46	-0.1615	-17.2912	-2.8704 4-1	4.76923
4	5.24615	ULS	Combination	Min	-17.053	-1.806	-10.877	-0.1615	-12.6802	-2.1049 4-1	5.24615
4	5.72308	ULS	Combination	Min	-17.053	-2.207	-13.294	-0.1615	-6.9165	-1.1482 4-1	5.72308
4		ULS	Combination	Min	-17.053	-2.608	-15.711	-0.1615	-4.44E-14	-1.153E-13 4-1	6.2
5		ULS	Combination	Max	8.324	2.608	15.711	0.1614	0	0-1	0
5	0.47692	ULS	Combination	Max	8.324	2.207	13.294	0.1614	6.9165	91.7764 5-1	0.47692
5	0.95385	ULS	Combination	Max	8.324	1.806	10.877	0.1614	12.6802	$168.25675-1$	0.95385
5	1.43077	ULS	Combination	Max	8.324	1.404	8.46	0.1614	17.2912	229.441 5-1	1.43077
5	1.90769	ULS	Combination	Max	8.324	1.003	6.043	0.1614	20.7494	275.3292 5-1	1.90769
5	2.38462	ULS	Combination	Max	8.324	0.602	3.626	0.1614	23.0549	305.9213 5-1	2.38462
5	2.86154	ULS	Combination	Max	8.324	0.201	1.209	0.1614	24.2076	321.2174 5-1	2.86154
5	3.33846	ULS	Combination	Max	8.324	16.036	1.209	0.1614	24.2076	321.2174 5-1	3.33846
5	3.81538	ULS	Combination	Max	8.324	48.109	3.626	0.1614	23.0549	305.9213 5-1	3.81538
5	4.29231	ULS	Combination	Max	8.324	80.181	6.043	0.1614	20.7494	275.3292 5-1	4.29231
5	4.76923	ULS	Combination	Max	8.324	112.253	8.46	0.1614	17.2912	$229.4415-1$	4.76923
5	5.24615	ULS	Combination	Max	8.324	144.326	10.877	0.1614	12.6802	168.2567 5-1	5.24615
5	5.72308	ULS	Combination	Max	8.324	176.398	13.294	0.1614	6.9165	91.7764 5-1	5.72308
5		ULS	Combination	Max	8.324	208.471	15.711	0.1614	$4.44 \mathrm{E}-14$	8.266E-14 5-1	6.2
5		ULS	Combination	Min	-8.324	-208.471	-15.711	-0.002	0	05-1	0
5	0.47692	ULS	Combination	Min	-8.324	-176.398	-13.294	-0.002	-6.9165	-1.1482 5-1	0.47692
5	0.95385	ULS	Combination	Min	-8.324	-144.326	-10.877	-0.002	-12.6802	-2.1049 5-1	0.95385
5	1.43077	ULS	Combination	Min	-8.324	-112.253	-8.46	-0.002	-17.2912	-2.8704 5-1	1.43077
5	1.90769	ULS	Combination	Min	-8.324	-80.181	-6.043	-0.002	-20.7494	-3.4445 5-1	1.90769
5	2.38462	ULS	Combination	Min	-8.324	-48.109	-3.626	-0.002	-23.0549	-3.8272 5-1	2.38462
5	2.86154	ULS	Combination	Min	-8.324	-16.036	-1.209	-0.002	-24.2076	-4.0185 5-1	2.86154
5	3.33846	ULS	Combination	Min	-8.324	-0.201	-1.209	-0.002	-24.2076	-4.0185 5-1	3.33846
5	3.81538	ULS	Combination	Min	-8.324	-0.602	-3.626	-0.002	-23.0549	-3.8272 5-1	3.81538
5	4.29231	ULS	Combination	Min	-8.324	-1.003	-6.043	-0.002	-20.7494	-3.4445 5-1	4.29231
5	4.76923	ULS	Combination	Min	-8.324	-1.404	-8.46	-0.002	-17.2912	-2.8704 5-1	4.76923
5	5.24615	ULS	Combination	Min	-8.324	-1.806	-10.877	-0.002	-12.6802	-2.1049 5-1	5.24615
5	5.72308	ULS	Combination	Min	-8.324	-2.207	-13.294	-0.002	-6.9165	-1.1482 5-1	5.72308
5		ULS	Combination	Min	-8.324	-2.608	-15.711	-0.002	-4.44E-14	-1.153E-13 5-1	6.2
6		ULS	Combination	Max	0	26.174	29.208	0.0018	0	06-1	0
6	0.47692	ULS	Combination	Max	0	22.147	24.715	0.0018	12.8585	157.2836 6-1	0.47692
6	0.95385	ULS	Combination	Max	0	18.121	20.221	0.0018	23.574	288.3533 6-1	0.95385
6	1.43077	ULS	Combination	Max	0	14.094	15.727	0.0018	32.1463	393.2091 6-1	1.43077
6	1.90769	ULS	Combination	Max	0	10.067	11.234	0.0018	38.5756	471.8509 6-1	1.90769
6	2.38462	ULS	Combination	Max	0	6.04	6.74	0.0018	42.8617	524.2787 6-1	2.38462
6	2.86154	ULS	Combination	Max	0	2.013	2.247	0.0018	45.0048	550.4927 6-1	2.86154
6	3.33846	ULS	Combination	Max	0	27.482	2.247	0.0018	45.0048	550.4927 6-1	3.33846
6	3.81538	ULS	Combination	Max	0	82.447	6.74	0.0018	42.8617	524.2787 6-1	3.81538
6	4.29231	ULS	Combination	Max	0	137.412	11.234	0.0018	38.5756	471.8509 6-1	4.29231
6	4.76923	ULS	Combination	Max	0	192.376	15.727	0.0018	32.1463	393.2091 6-1	4.76923
6	5.24615	ULS	Combination	Max	0	247.341	20.221	0.0018	23.574	288.3533 6-1	5.24615
6	5.72308		Combination	Max	0	302.306	24.715	0.0018	12.8585	157.2836 6-1	5.72308
6		ULS	Combination	Max	0	357.271	29.208	0.0018	$2.508 \mathrm{E}-14$	3.732E-13 6-1	6.2
6		ULS	Combination	Min	0	-357.271	-29.208	-0.1409	0	06-1	0
6	0.47692	ULS	Combination	Min	0	-302.306	-24.715	-0.1409	-12.8585	-11.5229 6-1	0.47692
6	0.95385		Combination	Min	0	-247.341	-20.221	-0.1409	-23.574	-21.1252 6-1	0.95385
6	1.43077		Combination	Min	0	-192.376	-15.727	-0.1409	-32.1463	-28.8071 6-1	1.43077
6	1.90769		Combination	Min	0	-137.412	-11.234	-0.1409	-38.5756	-34.5686 6-1	1.90769
6	2.38462		Combination	Min	0	-82.447	-6.74	-0.1409	-42.8617	-38.4095 6-1	2.38462
6	2.86154		Combination	Min	0	-27.482	-2.247	-0.1409	-45.0048	-40.33 6-1	2.86154
6	3.33846	ULS	Combination	Min	0	-2.013	-2.247	-0.1409	-45.0048	-40.33 6-1	3.33846
6	3.81538		Combination	Min	0	-6.04	-6.74	-0.1409	-42.8617	-38.4095 6-1	3.81538
6	4.29231	ULS	Combination	Min	0	-10.067	-11.234	-0.1409	-38.5756	-34.5686 6-1	4.29231
6	4.76923	ULS	Combination	Min	0	-14.094	-15.727	-0.1409	-32.1463	-28.8071 6-1	4.76923
6	5.24615	ULS	Combination	Min	0	-18.121	-20.221	-0.1409	-23.574	-21.1252 6-1	5.24615
6	5.72308	ULS	Combination	Min	0	-22.147	-24.715	-0.1409	-12.8585	-11.5229 6-1	5.72308
6		ULS	Combination	Min	0	-26.174	-29.208	-0.1409	-2.508E-14	2.443E-14 6-1	6.2
7		ULS	Combination	Max	0	26.174	29.208	0.1409	0	07-1	0
7	0.47692	ULS	Combination	Max	0	22.147	24.715	0.1409	12.8585	$157.28367-1$	0.47692
7	0.95385	ULS	Combination	Max	0	18.121	20.221	0.1409	23.574	288.3533 7-1	0.95385
7	1.43077	ULS	Combination	Max	0	14.094	15.727	0.1409	32.1463	393.2091 7-1	1.43077
7	1.90769	ULS	Combination	Max	0	10.067	11.234	0.1409	38.5756	$471.85097-1$	1.90769
7	2.38462	ULS	Combination	Max	0	6.04	6.74	0.1409	42.8617	$524.27877-1$	2.38462
7	2.86154	ULS	Combination	Max	0	2.013	2.247	0.1409	45.0048	550.4927 7-1	2.86154
7	3.33846	ULS	Combination	Max	0	27.482	2.247	0.1409	45.0048	550.4927 7-1	3.33846

3.81538 ULS
4.29231 ULS
4.76923 ULS
5.24615 ULS
5.72308 ULS
6.2 ULS
0 ULS
0.47692 ULS
0.95385 ULS
1.43077 ULS
1.90769 ULS
2.38462 ULS
2.86154 ULS
3.33846 ULS
3.81538 ULS
4.29231 ULS
4.76923 ULS
5.24615 ULS
5.72308 ULS
6.2 ULS
0 ULS
0.47692 ULS
0.95385 ULS
1.43077 ULS
1.90769 ULS
2.38462 ULS
2.86154 ULS
3.33846 ULS
3.81538 ULS
4.29231 ULS
4.76923 ULS
5.24615 ULS
5.72308 ULS
6.2 ULS
ULS
0.47692 ULS
0.95385 ULS
1.43077 ULS
1.90769 ULS
2.38462 ULS
2.86154 ULS
3.33846 ULS
3.81538 ULS
4.29231 ULS
4.76923 ULS
5.24615 ULS
5.72308 ULS
6.2 ULS
0 ULS
0.47692 ULS
0.95385 ULS
1.43077 ULS
1.90769 ULS
2.38462 ULS
2.86154 ULS
3.33846 ULS
3.81538 ULS
4.29231 ULS
4.76923 ULS
5.24615 ULS
5.72308 ULS
6.2 ULS
0 ULS
0.47692 ULS
0.95385 ULS
1.43077 ULS
1.90769 ULS
2.38462 ULS
2.86154 ULS
3.33846 ULS
3.81538 ULS
4.29231 ULS
4.76923 ULS
5.24615 ULS
5.72308 ULS
6.2 ULS

Combination	Max
Combination	Max
Combination	Min
Combination	Max
Combination	Min
Combination	Max
Combination	Min

0	82.447	6.74	0.1409	42.8617	524.2787 7-1	3.81538
0	137.412	11.234	0.1409	38.5756	471.85097 -1	4.29231
0	192.376	15.727	0.1409	32.1463	393.2091 7-1	4.76923
0	247.341	20.221	0.1409	23.574	288.3533 7-1	5.24615
0	302.306	24.715	0.1409	12.8585	157.2836 7-1	5.72308
0	357.271	29.208	0.1409	$2.508 \mathrm{E}-14$	$3.732 \mathrm{E}-13$ 7-1	6.2
0	-357.271	-29.208	-0.0018	0	07-1	0
0	-302.306	-24.715	-0.0018	-12.8585	-11.5229 7-1	0.47692
0	-247.341	-20.221	-0.0018	-23.574	-21.1252 7-1	0.95385
0	-192.376	-15.727	-0.0018	-32.1463	-28.8071 7-1	1.43077
0	-137.412	-11.234	-0.0018	-38.5756	-34.5686 7-1	1.90769
0	-82.447	-6.74	-0.0018	-42.8617	-38.4095 7-1	2.38462
0	-27.482	-2.247	-0.0018	-45.0048	-40.33 7-1	2.86154
0	-2.013	-2.247	-0.0018	-45.0048	-40.33 7-1	3.33846
0	-6.04	-6.74	-0.0018	-42.8617	-38.4095 7-1	3.81538
0	-10.067	-11.234	-0.0018	-38.5756	-34.5686 7-1	4.29231
0	-14.094	-15.727	-0.0018	-32.1463	-28.8071 7-1	4.76923
0	-18.121	-20.221	-0.0018	-23.574	-21.1252 7-1	5.24615
0	-22.147	-24.715	-0.0018	-12.8585	-11.5229 7-1	5.72308
0	-26.174	-29.208	-0.0018	-2.508E-14	$2.443 \mathrm{E}-14$ 7-1	6.2
0	6.514	17.968	0.0004965	0	08-1	0
0	5.512	15.203	0.0004965	7.91	102.6943 8-1	0.47692
0	4.51	12.439	0.0004965	14.5017	188.2728 8-1	0.95385
0	3.508	9.675	0.0004965	19.775	256.7357 8-1	1.43077
0	2.505	6.911	0.0004965	23.73	308.0828 8-1	1.90769
0	1.503	4.146	0.0004965	26.3667	342.3142 8-1	2.38462
0	0.501	1.382	0.0004965	27.685	359.43 8-1	2.86154
0	17.944	1.382	0.0004965	27.685	359.43 8-1	3.33846
0	53.832	4.146	0.0004965	26.3667	342.3142 8-1	3.81538
0	89.719	6.911	0.0004965	23.73	308.0828 8-1	4.29231
0	125.607	9.675	0.0004965	19.775	256.7357 8-1	4.76923
0	161.495	12.439	0.0004965	14.5017	188.2728 8-1	5.24615
0	197.383	15.203	0.0004965	7.91	102.6943 8-1	5.72308
0	233.271	17.968	0.0004965	3.202E-14	2.979E-13 8-1	6.2
0	-233.271	-17.968	-0.0397	0	08-1	0
0	-197.383	-15.203	-0.0397	-7.91	-2.8677 8-1	0.47692
0	-161.495	-12.439	-0.0397	-14.5017	-5.2575 8-1	0.95385
0	-125.607	-9.675	-0.0397	-19.775	-7.1693 8-1	1.43077
0	-89.719	-6.911	-0.0397	-23.73	-8.6031 8-1	1.90769
0	-53.832	-4.146	-0.0397	-26.3667	-9.5591 8-1	2.38462
0	-17.944	-1.382	-0.0397	-27.685	-10.037 8-1	2.86154
0	-0.501	-1.382	-0.0397	-27.685	-10.037 8-1	3.33846
0	-1.503	-4.146	-0.0397	-26.3667	-9.5591 8-1	3.81538
0	-2.505	-6.911	-0.0397	-23.73	-8.6031 8-1	4.29231
0	-3.508	-9.675	-0.0397	-19.775	-7.1693 8-1	4.76923
0	-4.51	-12.439	-0.0397	-14.5017	-5.2575 8-1	5.24615
0	-5.512	-15.203	-0.0397	-7.91	-2.8677 8-1	5.72308
0	-6.514	-17.968	-0.0397	-3.202E-14	-5.074E-14 8-1	6.2
0	6.514	17.968	0.0397	0	09-1	0
0	5.512	15.203	0.0397	7.91	102.6943 9-1	0.47692
0	4.51	12.439	0.0397	14.5017	188.2728 9-1	0.95385
0	3.508	9.675	0.0397	19.775	256.7357 9-1	1.43077
0	2.505	6.911	0.0397	23.73	308.0828 9-1	1.90769
0	1.503	4.146	0.0397	26.3667	342.3142 9-1	2.38462
0	0.501	1.382	0.0397	27.685	359.43 9-1	2.86154
0	17.944	1.382	0.0397	27.685	359.43 9-1	3.33846
0	53.832	4.146	0.0397	26.3667	342.3142 9-1	3.81538
0	89.719	6.911	0.0397	23.73	308.0828 9-1	4.29231
0	125.607	9.675	0.0397	19.775	256.7357 9-1	4.76923
0	161.495	12.439	0.0397	14.5017	188.2728 9-1	5.24615
0	197.383	15.203	0.0397	7.91	102.6943 9-1	5.72308
0	233.271	17.968	0.0397	3.202E-14	2.979E-13 9-1	6.2
0	-233.271	-17.968	-0.0004963	0	0 9-1	0
0	-197.383	-15.203	-0.0004963	-7.91	-2.8677 9-1	0.47692
0	-161.495	-12.439	-0.0004963	-14.5017	-5.2575 9-1	0.95385
0	-125.607	-9.675	-0.0004963	-19.775	-7.1693 9-1	1.43077
0	-89.719	-6.911	-0.0004963	-23.73	-8.6031 9-1	1.90769
0	-53.832	-4.146	-0.0004963	-26.3667	-9.5591 9-1	2.38462
0	-17.944	-1.382	-0.0004963	-27.685	-10.037 9-1	2.86154
0	-0.501	-1.382	-0.0004963	-27.685	-10.037 9-1	3.33846
0	-1.503	-4.146	-0.0004963	-26.3667	-9.5591 9-1	3.81538
0	-2.505	-6.911	-0.0004963	-23.73	-8.6031 9-1	4.29231
0	-3.508	-9.675	-0.0004963	-19.775	-7.1693 9-1	4.76923
0	-4.51	-12.439	-0.0004963	-14.5017	-5.2575 9-1	5.24615
0	-5.512	-15.203	-0.0004963	-7.91	-2.8677 9-1	5.72308
0	-6.514	-17.968	-0.0004963	-3.202E-14	-5.074E-14 9-1	6.2

SUMMARY		P	V 2	V 3	T	M 2	M3
	MAX	17.053	357.271	29.208	0.1614	45.0048	550.4927
	MIN	-17.053	-357.271	-29.208	-0.1615	-45.0048	-40.33

	Calculation Sheet	Job No．	Sheet No．	Rev．
		Member／Location：		
Job Tilte ：		Drg．Ref．：		
		Made By	ate：Ma	heck By

DESIGN CODE

Code of Practice for the Structural Use of Steel 2011

MEMBER SPECIFICATION Member Mark：MB2

Steel grade	$=$ BS S355
Section	$=$ UC $305 \times 305 \times 158$
Type	$=$ hot－rolled steel section

Type $\quad=$ hot－rolled steel section

MATERIAL／SECTIONAL PROPERTIES

Modulus of elasticity	$=205000 \mathrm{MPa}$	y	

Area	A	$=$	$201 \mathrm{~cm}^{2}$			
Dimensions	D	$=$	327.1 mm	d	$=$	246.7 mm
	B	$=$	311.2 mm	b	$=$	155.6 mm
	T	$=$	25 mm	t	$=$	15.8 mm
Moment of inertia	Ix	$=$	$38750 \mathrm{~cm}^{4}$	ly	$=$	$12570 \mathrm{~cm}^{4}$
Radius of gyration	rx	$=$	13.9 cm	ry	$=$	7.9 cm
Elastic modulus	Zx	$=$	$2369 \mathrm{~cm}^{3}$	Zy	$=$	$808 \mathrm{~cm}^{3}$
Plastic modulus	Sx	$=$	$2680 \mathrm{~cm}^{3}$	Sy	$=$	$1230 \mathrm{~cm}^{3}$
Design strength	py	$=$	345 MPa			

SECTION CLASSIFICATION

Parameter	e		SQRT	75 ／py）		＝	0.8928		
Stress ratio	r1		Nc／（d	t＊py）		＝	0.0127		
	r2		Nc／（A			＝	0.0025		
Dimension ratio	b／T	$=$	6.2	＜＝	8 e	$=$	7.1	Flange：	Class
	d／t		15.6	＜＝	80 e		70.5	Web：	Class

DESIGN FORCES AND MOMENTS

$\mathrm{Nc}(\mathrm{kN})$	$\mathrm{Nt}(\mathrm{kN})$	$\mathrm{Vx}(\mathrm{kN})$	$\mathrm{Vy}(\mathrm{kN})$	$\mathrm{Mx}(\mathrm{kNm})$	$\mathrm{My}(\mathrm{kNm})$	（Page	Refer）
17.06	17.06	29.21	357.27	550.49	45.01		

SHEAR CAPACITY CHECK

Shear area	Avy	$=t$＊	＝	$5168 \mathrm{~mm}^{2}$					
Shear capacity	Vcy	＝py＊Avy／SQRT（3）	＝	1029.4 kN	＞＝			357.27 kN	OK
Shear load check	Vy	＜$=0.6$＊Vcy	＝	617.66 kN		（Low shear load）			35\％
Shear area	Avx	$=0.9$＊（2 ${ }^{\text {＊＊}}$ T）	＝	$14004 \mathrm{~mm}^{2}$	＞＝				
Shear capacity	Vcx	＝py＊Avx／SQRT（3）	＝	2789.4 kN		Vx		29.21 kN	OK
Shear load check	Vx	＜＝ 0.6 ＊Vcx	＝	1673.6 kN		（Low shear load）			1\％
MOMENT CAPACITY CHECK									
Moment capacity		$\begin{aligned} & =p y^{*} \mathrm{Sx} \\ & \left(1.2^{*} p y \text { * } Z x\right. \end{aligned}$		$\begin{array}{r} 924.6 \mathrm{kNm} \\ \hline 980.77 \mathrm{kNm} \text {) } \end{array}$	＞＝	Mx	＝	550.49 kNm	$\begin{aligned} & \text { OK } \\ & 60 \% \end{aligned}$
Moment capacity		$\begin{aligned} & =1.2^{*} \mathrm{py} \text { * Zy } \\ & \left(p y^{*} \mathrm{Sy}\right. \end{aligned}$		$\begin{aligned} & 334.51 \mathrm{kNm} \\ & \hline 424.35 \mathrm{kNm} \text {) } \end{aligned}$	＞＝	My	$=$	45.01 kNm	$\begin{gathered} \text { OK } \\ 13 \% \end{gathered}$

BIAXIAL MOMENTS：LOCAL CAPACITY CHECK

TABLE: Element Forces - Frames-MB1												
Frame	Station	OutputCase	CaseType	StepType	P	V2	V3	T	M2	M3	FrameElem	$\frac{\text { ElemStation }}{m}$
Text	m	Text	Text	Text	KN	KN	KN	$\frac{\mathrm{KN}-\mathrm{m}}{9.313 \mathrm{~F}-11}$	KN-m	KN-m	$\frac{\text { FrameElem }}{\text { Text }}$	
1	0 ULS		Combination	Max	6.891	-5.759	2.716		0	1.208 E	1-1	0
1	0.45714	ULS	Combination	Max	6.891	-4.479	2.716	$9.313 \mathrm{E}-11$	1.2414	26.33	1-1	0.45714
1	0.91429	ULS	Combination	Max	6.891	-3.199	2.716	$9.313 \mathrm{E}-11$	2.4829	51.85		0.91429
1	1.37143	ULS	Combination	Max	6.891	-1.92	2.716	$9.313 \mathrm{E}-11$	3.7243	76.5	1-1	1.37143
1	1.82857	ULS	Combination	Max	6.891	-0.64	2.716	$9.313 \mathrm{E}-11$	4.9657	100.4		1.82857
1	2.28571	ULS	Combination	Max	6.891	0.64	2.716	$9.313 \mathrm{E}-11$	6.2072	123.48		2.28571
1	2.74286	ULS	Combination	Max	6.891	1.92	2.716	$9.313 \mathrm{E}-11$	7.4486	145.72		2.74286
1		ULS	Combination	Max	6.891	3.2	2.716	$9.313 \mathrm{E}-11$	8.6901	167.1		3.2
1		ULS	Combination	Max	8.82	162.509	5.608	0.000008982	8.6901	166.98		0
1		ULS	Combination	Max	8.82	164.469	5.608	0.000008982	5.8859	85.2		0.5
1		ULS	Combination	Max	8.82	166.429	5.608	0.000008982	3.0818			1
1		ULS	Combination	Max	8.82	168.388	5.608	0.000008982	0.2777			1.5
1		ULS	Combination	Max	8.82	170.348	5.608	0.000008982	2.5264	-2.68		2
1		ULS	Combination	Max	8.82	172.308	5.608	0.000008982	5.3305	-6.13		2.5
1		ULS	Combination	Max	0	-7.132	1.333	-2.328E-11	5.3305	-6.13		0
1		ULS	Combination	Max	0	-5.732	1.333	-2.328E-11	4.6642	-2.91		0.5
1		ULS	Combination	Max	0	-4.332	1.333	-2.328E-11	3.9979	-0.39		1
1		ULS	Combination	Max	0	-2.932	1.333	-2.328E-11	3.3316			1.5
1		ULS	Combination	Max	0	-1.532	1.333	-2.328E-11	2.6652			
1		ULS	Combination	Max	0	-0.133	1.333	-2.328E-11	1.9989			2.5
1		ULS	Combination	Max	0	1.267	1.333	-2.328E-11	1.3326			3
1		ULS	Combination	Max	0	2.667	1.333	-2.328E-11	0.6663			3.5
1		ULS	Combination	Max	0	4.067	1.333	-2.328E-11	1.164E-16			4
1		ULS	Combination	Min	-6.891	-58.504	-2.716	-6.519E-10	0	-2.416E		0
1	0.45714	ULS	Combination	Min	-6.891	-56.712	-2.716	-6.519E-10	-1.2414			0.45714
1	0.91429	ULS	Combination	Min	-6.891	-54.921	-2.716	-6.519E-10	-2.4829			0.91429
1	1.37143	ULS	Combination	Min	-6.891	-53.129	-2.716	-6.519E-10	-3.7243			1.37143
1	1.82857	ULS	Combination	Min	-6.891	-51.337	-2.716	-6.519E-10	-4.9657			1.82857
1	2.28571	ULS	Combination	Min	-6.891	-49.545	-2.716	-6.519E-10	-6.2072			2.28571
1	2.74286	ULS	Combination	Min	-6.891	-47.753	-2.716	-6.519E-10	-7.4486			2.74286
1		ULS	Combination	Min	-6.891	-45.962	-2.716	-6.519E-10	-8.6901			3.2
1		ULS	Combination	Min	-8.82	0.592	-5.608	$2.196 \mathrm{E}-07$	-8.6901			,
1		ULS	Combination	Min	-8.82	1.992	-5.608	$2.196 \mathrm{E}-07$	-5.8859			0.5
1		ULS	Combination	Min	-8.82	3.392	-5.608	$2.196 \mathrm{E}-07$	-3.0818			1
1		ULS	Combination	Min	-8.82	4.791	-5.608	$2.196 \mathrm{E}-07$	-0.2777	-81.18		1.5
1		ULS	Combination	Min	-8.82	6.191	-5.608	$2.196 \mathrm{E}-07$	-2.5264	-165.8		2
1		ULS	Combination	Min	-8.82	7.591	-5.608	$2.196 \mathrm{E}-07$	-5.3305	-251.53		2.5
1		ULS	Combination	Min		-70.769	-1.333	-3.469E-09	-5.3305	-251.6		
1		ULS	Combination	Min	0	-68.809	-1.333	-3.469E-09	-4.6642	-216.78		0.5
1		ULS	Combination	Min	0	-66.849	-1.333	-3.469E-09	-3.9979	-182.86		,
1		ULS	Combination	Min	0	-64.889	-1.333	-3.469E-09	-3.3316	-149.93		1.5
1		ULS	Combination	Min	0	-62.93	-1.333	-3.469E-09	-2.6652	-117.9802		2
1		ULS	Combination	Min	0	-60.97	-1.333	-3.469E-09	-1.9989	-87.00		2.5
1		ULS	Combination	Min	0	-59.01	-1.333	-3.469E-09	-1.3326	-57.010		3
1		ULS	Combination	Min	0	-57.05	-1.333	-3.469E-09	-0.6663	-27.99		3.5
1		ULS	Combination	Min	0	-55.09	-1.333	-3.469E-09	-1.164E-16	-0.0004		4
2		ULS	Combination	Max	13.781	-5.136	2.848	$3.26 \mathrm{E}-10$	0	9.948 E		0
2	0.45714	ULS	Combination	Max	13.781	-3.856	2.848	$3.26 \mathrm{E}-10$	1.3019	49.1		0.45714
2	0.91429	ULS	Combination	Max	13.781	-2.576	2.848	$3.26 \mathrm{E}-10$	2.6039	97.40		0.91429
2	1.37143	ULS	Combination	Max	13.781	-1.296	2.848	$3.26 \mathrm{E}-10$	3.9058	144.8		1.37143
2	1.82857	ULS	Combination	Max	13.781	-0.016	2.848	$3.26 \mathrm{E}-10$	5.2078	191.5		1.82857
2	2.28571	ULS	Combination	Max	13.781	1.263	2.848	$3.26 \mathrm{E}-10$	6.5097	237.35		2.28571
2	2.74286	ULS	Combination	Max	13.781	2.543	2.848	$3.26 \mathrm{E}-10$	7.8116	282.3		2.74286
2		ULS	Combination	Max	13.781	3.823	2.848	$3.26 \mathrm{E}-10$	9.1136	326.56		3.2
2		ULS	Combination	Max	17.64	321.16	5.882	0.00001748	9.1136	326.89		0
2		ULS	Combination	Max	17.64	323.12	5.882	0.00001748	6.1728	165.82		0.5
2		ULS	Combination	Max	17.64	325.08	5.882	0.00001748	3.232			1
2		ULS	Combination	Max	17.64	327.039	5.882	0.00001748	0.2913		2-2	1.5
2		ULS	Combination	Max	17.64	328.999	5.882	0.00001748	2.6495	-0.71		2
2		ULS	Combination	Max	17.64	330.959	5.882	0.00001748	5.5903	-3.1	2-2	2.5
2		ULS	Combination	Max	0	-6.393	1.398	$5.122 \mathrm{E}-09$	5.5903	-3.1		5
2		ULS	Combination	Max	0	-4.993	1.398	$5.122 \mathrm{E}-09$	4.8915	-0.32		0.5
2		ULS	Combination	Max	0	-3.593	1.398	$5.122 \mathrm{E}-09$	4.1927		2-3	
2		ULS	Combination	Max	0	-2.194	1.398	$5.122 \mathrm{E}-09$	3.4939			1.5
2		ULS	Combination	Max	0	-0.794	1.398	$5.122 \mathrm{E}-09$	2.7951			2
2		ULS	Combination	Max	0	0.606	1.398	$5.122 \mathrm{E}-09$	2.0964			2.5
2		ULS	Combination	Max	0	2.006	1.398	$5.122 \mathrm{E}-09$	1.3976			3
2		ULS	Combination	Max	0	3.406	1.398	$5.122 \mathrm{E}-09$	0.6988			3.5
2		ULS	Combination	Max	0	4.806	1.398	$5.122 \mathrm{E}-09$	1.114E-15	0.0009		0
2		ULS	Combination	Min	-13.781	-108.324	-2.848	-3.26E-10	0	-9.948E		0
2	0.45714	ULS	Combination	Min	-13.781	-106.532	-2.848	-3.26E-10	-1.3019		2-1	0.45714
2	0.91429	ULS	Combination	Min	-13.781	-104.74	-2.848	-3.26E-10	-2.6039		2-1	0.91429
2	1.37143	ULS	Combination	Min	-13.781	-102.948	-2.848	-3.26E-10	-3.9058			1.37143
2	1.82857	ULS	Combination	Min	-13.781	-101.157	-2.848	-3.26E-10	-5.2078			1.82857
2	2.28571	ULS	Combination	Min	-13.781	-99.365	-2.848	-3.26E-10	-6.5097			2.28571
2	2.74286	ULS	Combination	Min	-13.781	-97.573	-2.848	-3.26E-10	-7.8116		2-1	2.74286
2		ULS	Combination	Min	-13.781	-95.781	-2.848	-3.26E-10	-9.1136		2-1	3.2
2		ULS	Combination	Min	-17.64	-1.393	-5.882	$1.128 \mathrm{E}-07$	-9.1136			0
2		ULS	Combination	Min	-17.64	0.006915	-5.882	$1.128 \mathrm{E}-07$	-6.1728			0.5
2		ULS	Combination	Min	-17.64	1.407	-5.882	$1.128 \mathrm{E}-07$	-3.232		2-2	1
2		ULS	Combination	Min	-17.64	2.807	-5.882	$1.128 \mathrm{E}-07$	-0.2913	-159.25	2-2	1.5
2		ULS	Combination	Min	-17.64	4.206	-5.882	$1.128 \mathrm{E}-07$	-2.6495	-323.268	2-2	2
2		ULS	Combination	Min	-17.64	5.606	-5.882	$1.128 \mathrm{E}-07$	-5.5903	-488.25	2-2	2.5
2		ULS	Combination	Min	0	-129.813	-1.398	-1.863E-10	-5.5903	-487.9	2-3	0
2		ULS	Combination	Min	0	-127.854	-1.398	-1.863E-10	-4.8915	-423.55	2-3	0.5
2		ULS	Combination	Min	0	-125.894	-1.398	-1.863E-10	-4.1927	-360.122	2-3	
2		ULS	Combination	Min	0	-123.934	-1.398	-1.863E-10	-3.4939	-297.66	2-3	1.5
2		ULS	Combination	Min	0	-121.974	-1.398	-1.863E-10	-2.7951	-236.18	2-3	2
2		ULS	Combination	Min	0	-120.014	-1.398	-1.863E-10	-2.0964	-175.691	2-3	2.5
2		ULS	Combination	Min	0	-118.055	-1.398	-1.863E-10	-1.3976	-116.17	2-3	3
2		ULS	Combination	Min	0	-116.095	-1.398	-1.863E-10	-0.6988	-57.63	2-3	3.5
2		ULS	Combination	Min	0	-114.135	-1.398	-1.863E-10	-1.114E-15	-0.0		

Combination	Max
Combination	Max
Combination	Min
Combina	

6.891	-5.759	3.119	$-2.328 \mathrm{E}-10$	2.
6.891	-4.479	3.119	$-2.328 \mathrm{E}-10$	
6.891	-3.199	3.119	$-2.328 \mathrm{E}-10$	
6.891	-1.919	3.119	$-2.328 \mathrm{E}-10$	
6.891	-0.64	3.119	$-2.328 \mathrm{E}-10$	
6.891	0.64	3.119	$-2.328 \mathrm{E}-10$	
6.891	1.92	3.119	$-2.328 \mathrm{E}-10$	
6.891	3.2	3.119	$-2.328 \mathrm{E}-10$	
8.82	162.501	6.441	0.000008981	
8.82	164.461	6.441	0.000008981	
8.82	166.421	6.441	0.000008981	
8.82	168.38	6.441	0.000008981	
8.82	170.34	6.441	0.000008981	
8.82	172.3	6.441	0.000008981	
0	-7.132	1.531	$-1.863 \mathrm{E}-10$	
0	-5.732	1.531	$-1.863 \mathrm{E}-10$	
0	-4.332	1.531	$-1.863 \mathrm{E}-10$	
0	-2.932	1.531	$-1.863 \mathrm{E}-10$	
0	-1.533	1.531	$-1.863 \mathrm{E}-10$	
0	-0.133	1.531	$-1.863 \mathrm{E}-10$	
0	1.267	1.531	$-1.863 \mathrm{E}-10$	
0	2.667	1.531	$-1.863 \mathrm{E}-10$	
0	4.067	1.531	$-1.863 \mathrm{E}-10$	1
-6.891	-58.512	-3.119	$-3.26 \mathrm{E}-10$	-2.
-6.891	-56.72	-3.119	$-3.26 \mathrm{E}-10$	
-6.891	-54.929	-3.119	$-3.26 \mathrm{E}-10$	-10
-6.891	-53.137	-3.119	$-3.26 \mathrm{E}-10$	-10
-6.891	-51.345	-3.119	$-3.26 \mathrm{E}-10$	-
-6.891	-49.553	-3.119	$-3.26 \mathrm{E}-10$	
-6.891	-47.761	-3.119	$-3.26 \mathrm{E}-10$	
-6.891	-45.97	-3.119	$-3.26 \mathrm{E}-10$	
-8.82	0.592	-6.441	$2.194 \mathrm{E}-07$	
-8.82	1.992	-6.441	$2.194 \mathrm{E}-07$	
-8.82	3.392	-6.441	$2.194 \mathrm{E}-07$	
-8.82	4.792	-6.441	$2.194 \mathrm{E}-07$	
-8.82	6.191	-6.441	$2.194 \mathrm{E}-07$	
-8.82	7.591	-6.441	$2.194 \mathrm{E}-07$	
0	-70.757	-1.531	$-2.724 \mathrm{E}-09$	
0	-68.797	-1.531	$-2.724 \mathrm{E}-09$	
0	-66.838	-1.531	$-2.724 \mathrm{E}-09$	
0	-64.878	-1.531	$-2.724 \mathrm{E}-09$	
0	-62.918	-1.531	$-2.724 \mathrm{E}-09$	
0	-60.958	-1.531	$-2.724 \mathrm{E}-09$	
0	-58.998	-1.531	$-2.724 \mathrm{E}-09$	
0	-57.039	-1.531	$-2.724 \mathrm{E}-09$	
0	-55.079	-1.531	$-2.724 \mathrm{E}-09$	-1.14
0				

$2.487 \mathrm{E}-15$	$1.279 \mathrm{E}-143-1$
1.4259	$26.33893-1$
2.8518	$51.85873-1$
4.2777	$76.55943-1$
5.7035	$100.4413-1$
7.1294	$123.50353-1$
8.5553	$145.74693-1$
9.9812	$167.17113-1$
9.9812	$167.00973-2$
6.7605	$85.26923-2$
3.5397	$2.92593-2$
0.319	$0.05893-2$
2.9017	$-2.68693-2$
6.1225	$-6.13253-2$
6.1225	$-6.13073-3$
5.3572	$-2.91473-3$
4.5919	$-0.39863-3$
3.8266	$1.41753-3$
3.0612	$2.53383-3$
2.2959	$2.95013-3$
1.5306	$2.66653-3$
0.7653	$1.6833-3$
$1.142 \mathrm{E}-15$	$0.03973-3$
$-2.487 \mathrm{E}-15$	$-5.969 \mathrm{E}-143-1$
-1.4259	$2.34023-1$
-2.8518	$4.09523-1$
-4.2777	$5.26523-1$
-5.7035	$5.85023-1$
-7.1294	$5.853-1$
-8.5553	$5.26483-1$
-9.9812	$4.09453-1$
-9.9812	$4.09653-2$
-6.7605	$3.45053-2$
-3.5397	$2.00153-2$
-0.319	$-81.15133-2$
-2.9017	$-165.83143-2$
-6.1225	$-251.49143-2$
-6.1225	$-251.63233-3$
-5.3572	$-216.74363-3$
-4.5919	$-182.83493-3$
-3.8266	$-149.90613-3$
-3.0612	$-117.95713-3$
-2.2959	$-86.98813-3$
-1.5306	$-56.99893-3$
-0.7653	$-27.98973-3$
$-1142 \mathrm{E}-15$	$-0.0049653-3$
3	

0.45714 ULS 0.91429 ULS 82857 ULS 28571 ULS 286 U 3.2 ULS 3.2 ULS . 2 US 4.7 ULS 5.2 ULS 5.7 ULS .2 ULS 6.7 ULS 7.7 ULS 8.2 ULS 9.2 ULS 9.7 ULS 0.45714 ULS 0.91429 ULS 1.82857 ULS 2.28571 ULS 4286 ULS 3.2 ULS 3.7 ULS 4.7 ULS 5.2 ULS 5.7 ULS 6.2 ULS 6.7 ULS 7.2 ULS 7.7 ULS 8.2 ULS 9.2 ULS

Max Max Combination Max ombination Max Combination Max Combination Combination Max

Combination Max Combination Max Combination Max Combination Max Combination Max Max Combination Max Combination Max Combination Min Combination Min

	P	V2	V3	T	M2	M3
MAX	17.64	330.959	6.441	0.00001748	9.9812	326.8908
MIN	-17.64	-129.813	-6.441	$-3.469 \mathrm{E}-09$	-9.9812	-488.2579

DESIGN CODE

Code of Practice for the Structural Use of Steel 2011

MEMBER SPECIFICATION Member Mark：MB1

Steel grade	$=$ BS S355
Section	$=$ UC $356 \times 406 \times 287$
Type	$=$ hot－rolled steel section

y

MATERIAL／SECTIONAL PROPERTIES

Modulus of elasticity	E	$=$	205000 MPa			
Mass	m	$=$	$287.1 \mathrm{~kg} / \mathrm{m}$			
Area	A	$=$	$366 \mathrm{~cm}^{2}$			
Dimensions	D	$=$	393.6 mm	d	$=$	290.2 mm
	B	$=399 \mathrm{~mm}$	b	$=$	199.5 mm	
	T	$=$	36.5 mm	t	$=$	22.6 mm
Moment of inertia	Ix	$=$	$99880 \mathrm{~cm}^{4}$	ly	$=$	$38680 \mathrm{~cm}^{4}$
Radius of gyration	rx	$=16.5 \mathrm{~cm}$	ry	$=$	10.3 cm	
Elastic modulus	Zx	$=$	$5075 \mathrm{~cm}^{3}$	Zy	$=$	$1939 \mathrm{~cm}^{3}$
Plastic modulus	Sx	$=5812 \mathrm{~cm}^{3}$	Sy	$=$	$2949 \mathrm{~cm}^{3}$	
Design strength	py	$=$	345 MPa			

SECTION CLASSIFICATION

DESIGN FORCES AND MOMENTS

$\mathrm{Nc}(\mathrm{kN})$	$\mathrm{Nt}(\mathrm{kN})$	$\mathrm{Vx}(\mathrm{kN})$	$\mathrm{Vy}(\mathrm{kN})$	$\mathrm{Mx}(\mathrm{kNm})$	$\mathrm{My}(\mathrm{kNm})$
17.64	17.64	6.45	330.96	488.26	9.98

SHEAR CAPACITY CHECK

Shear area	Avy	$=t * D$	＝	$8895 \mathrm{~mm}^{2}$	＞＝				
Shear capacity	Vcy	＝py＊Avy／SQRT（3）	＝	1771.8 kN				330.96 kN	OK
Shear load check	Vy	＜＝ 0.6 ＊Vcy	＝	1063.1 kN		（Low shear load）			19\％
Shear area	Avx	$=0.9$＊（2 B＊ T ）	$=$	$26214 \mathrm{~mm}^{2}$	＞＝				
Shear capacity	Vcx	＝py＊Avx／SQRT（3）	＝	5221.5 kN		Vx		6.45 kN	OK
Shear load check	Vx	＜＝ 0.6 ＊Vcx	＝	3132.9 kN		（Low shear load）			0\％
MOMENT CAPACITY CHECK					＞＝	Mx	$=$	488.26 kNm	
Moment capacity	Mcx	$\begin{aligned} & =\mathrm{py}{ }^{*} \mathrm{Sx} \\ & \left(1.2^{*} p y^{*} \mathrm{Zx}\right. \end{aligned}$		$\frac{2005.1 \mathrm{kNm}}{2101.1 \mathrm{kNm} \text {) }}$					$\begin{gathered} \text { OK } \\ 24 \% \end{gathered}$
Moment capacity		$\begin{aligned} & =1.2^{*} \mathrm{py} \text { * } \mathrm{Zy} \\ & \left(\mathrm{py}{ }^{*} \mathrm{Sy}\right. \end{aligned}$		$\frac{802.75 \mathrm{kNm}}{1017.4 \mathrm{kNm} \text {) }}$	＞＝	My	＝	9.98 kNm	$\begin{aligned} & \text { OK } \\ & 1 \% \end{aligned}$

BIAXIAL MOMENTS：LOCAL CAPACITY CHECK

TABLE: Joint Reactions									
Joint	OutputCase	CaseType	StepType	F1	F2	F3	M1	M2	M3
Text	Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
1	SLS	Combination	Max	3.698	1.94	42.777		0	00
1	SLS	Combination	Min	-3.698	-1.94	33.429		0	00
3	SLS	Combination	Max	20.358	4.958	440.877		0	00
3	SLS	Combination	Min	-20.358	-4.958	326.679		0	00
4	SLS	Combination	Max	9.61	0.952	130.811		0	00
4	SLS	Combination	Min	-9.61	-0.952	97.187		0	00
5	SLS	Combination	Max	7.396	2.034	79.355		0	00
5	SLS	Combination	Min	-7.396	-2.034	60.614		0	00
7	SLS	Combination	Max	40.716	5.199	863.607		0	00
7	SLS	Combination	Min	-40.716	-5.199	635.387		0	00
8	SLS	Combination	Max	19.22	0.998	258.811		0	00
8	SLS	Combination	Min	-19.22	-0.998	191.432		0	00
9	SLS	Combination	Max	3.698	2.228	42.782		0	00
9	SLS	Combination	Min	-3.698	-2.228	33.434		0	00
11	SLS	Combination	Max	20.358	40.994	440.863		0	00
11	SLS	Combination	Min	-20.358	-40.994	326.668		0	00
12	SLS	Combination	Max	9.61	20.627	130.819		0	00
12	SLS	Combination	Min	-9.61	-20.627	97.193		0	00
		SUMMARY		P	V2	V3		M2	M3
			MAX	40.716	40.994	863.607		0	00
			MIN	-40.716	-40.994	33.429		0	$0 \quad 0$

Hilti PROFIS Engineering 3.0.94
www.hilti.com.hk

Company:		Page:	
Address:	Specifier:	1	
Phone I Fax:	1a	E-Mail:	
Design:	Date:	$23 / 5 / 2024$	
Fastening point:			

Specifier's comments:

1 Input data

Anchor type and diameter:

Return period (service life in years):
Item number:

HIT-HY 200-R 100 years + HIT-Z-R M20
100
2018438 HIT-Z-R M20x215 (element) / 2045036
HIT-HY 200-R (adhesive)

SAFE:ET
Filling set or any suitable annular gap filling solution

Effective embedment depth:
Material:
Evaluation Service Report:
Issued I Valid:
Proof:
Stand-off installation:
Anchor plate ${ }^{R}$:
Profile:
Base material:
Installation:
Reinforcement:
$\mathrm{h}_{\text {ef,opti }}=100.0 \mathrm{~mm}\left(\mathrm{~h}_{\text {ef,limit }}=220.0 \mathrm{~mm}\right)$
A4
ETA 12/0028
11/4/2019 | -
Based on design method EN 1992-4, Mechanical with a load factor 2 and global safety factor 3 $\mathrm{e}_{\mathrm{b}}=0.0 \mathrm{~mm}$ (no stand-off); $\mathrm{t}=15.0 \mathrm{~mm}$
$\mathrm{I}_{\mathrm{x}} \times \mathrm{I}_{\mathrm{y}} \times \mathrm{t}=450.0 \mathrm{~mm} \times 450.0 \mathrm{~mm} \times 15.0 \mathrm{~mm}$; (Recommended plate thickness: not calculated) IPB/HEB, IPB 340 / HE 340 B; (L x W x T x FT) $=340.0 \mathrm{~mm} \times 300.0 \mathrm{~mm} \times 12.0 \mathrm{~mm} \times 21.5 \mathrm{~mm}$ cracked concrete, $\mathrm{C} 40, \mathrm{f}_{\mathrm{c}, \mathrm{cyl}}=31.90 \mathrm{~N} / \mathrm{mm}^{2} ; \mathrm{h}=1,000.0 \mathrm{~mm}$, Temp. short/long: $40 / 24^{\circ} \mathrm{C}$ hammer drilled hole, Installation condition: Dry
no reinforcement or reinforcement spacing >= 150 mm (any \varnothing) or >= $100 \mathrm{~mm}(\varnothing<=10 \mathrm{~mm}$) no longitudinal edge reinforcement
${ }^{R}$ - The anchor calculation is based on a rigid anchor plate assumption.
Geometry [mm] \& Loading [kN, kNm]

Hilti PROFIS Engineering 3.0.94

www.hilti.com.hk			
Company:		Page:	2
Address:	Specifier:		
Phone I Fax:	1a	E-Mail:	
Design:	Date:	$23 / 5 / 2024$	
Fastening point:			

1.1 Load combination

Case	Description	Forces $[\mathrm{kN}] /$ Moments $[\mathrm{kNm}]$	Seismic	Fire	Max. Util. Anchor [\%]
1	Combination 1	$\mathrm{N}=-34.000 ; \mathrm{V}_{\mathrm{x}}=41.000 ; \mathrm{V}_{\mathrm{y}}=-41.000 ;$	no	no	76
	$\mathrm{M}_{\mathrm{x}}=0.000 ; \mathrm{M}_{\mathrm{y}}=0.000 ; \mathrm{M}_{\mathrm{z}}=0.000 ;$				

2 Load case/Resulting anchor forces

Anchor reactions [kN]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	0.000	14.496	10.250	-10.250
2	0.000	14.496	10.250	-10.250
3	0.000	14.496	10.250	-10.250
4	0.000	14.496	10.250	-10.250

(

max. concrete compressive strain:	$0.01[\%]$
max. concrete compressive stress:	$0.17\left[\mathrm{~N} / \mathrm{mm}^{2}\right]$
resulting tension force in $(\mathrm{x} / \mathrm{y})=(-/-)$:	$0.000[\mathrm{kN}]$
resulting compression force in $(\mathrm{x} / \mathrm{y})=(0.0 / 0.0):$	$34.000[\mathrm{kN}]$

Anchor forces are calculated based on the assumption of a rigid anchor plate.

Hilti PROFIS Engineering 3.0.94

www.hilti.com.hk			
Company:		Page:	3
Address:	Specifier:		
Phone I Fax:	1a	E-Mail:	
Design:	Date:	$23 / 5 / 2024$	
Fastening point:			

3 Tension load ((Based on EN 1992-4, Section 7.2.1 FOS = 3))

Hilti PROFIS Engineering 3.0.94
www.hilti.com.hk

Company:		Page:
Address:	Specifier:	
Phone I Fax:	1	E-Mail:
Design:	1 a	Date:
Fastening point:		

4 Shear load ((Based on EN 1992-4, Section 7.2.2 FOS = 3))

	Load [kN]	Capacity [kN]	Utilization β_{v} [\%]	Status
Steel Strength (without lever arm)*	14.496	29.333	50	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	57.983	83.500	70	OK
Concrete edge failure in direction $\mathrm{y}+{ }^{* *}$	20.500	27.241	76	OK

4.1 Steel Strength (without lever arm)

$\mathrm{V}_{\mathrm{Ed}} \leq \mathrm{V}_{\mathrm{Rd}, \mathrm{s}}=\frac{\mathrm{V}_{\mathrm{Rk}, \mathrm{s}}}{\gamma_{\mathrm{M}, \mathrm{s}}} \quad \quad$ EN 1992-4, Table 7.2
$\mathrm{V}_{\mathrm{Rk}, \mathrm{s}} \quad=\mathrm{k}_{7} \cdot \mathrm{~V}_{\mathrm{Rk}, \mathrm{s}}^{0} \quad$ EN 1992-4, Eq. (7.35)

$\mathrm{V}_{\mathrm{Rk}, \mathrm{s}}^{0}[\mathrm{kN}]$	k_{7}	$\mathrm{~V}_{\mathrm{Rk}, \mathrm{s}}[\mathrm{kN}]$	$\gamma_{M, \mathrm{~s}}$	$\mathrm{~V}_{\mathrm{Rd}, \mathrm{s}}[\mathrm{kN}]$	$\mathrm{V}_{\mathrm{Ed}}[\mathrm{kN}]$
88.000	1.000	88.000	3.000	29.333	14.496

4.2 Pryout Strength

$\mathrm{A}_{\mathrm{c}, \mathrm{N}}\left[\mathrm{mm}^{2}\right]$	$\mathrm{A}_{\mathrm{c}, \mathrm{N}}^{0}\left[\mathrm{~mm}^{2}\right]$	$\mathrm{c}_{\mathrm{cr}, \mathrm{N}}[\mathrm{mm}]$	$\mathrm{s}_{\mathrm{cr}, \mathrm{N}}[\mathrm{mm}]$	k_{8}	$\mathrm{f}_{\mathrm{c}, \mathrm{cyl}}\left[\mathrm{N} / \mathrm{mm}^{2}\right]$
202,500	90,000	150.0	300.0	2.560	31.90

$\mathrm{e}_{\mathrm{cc} 1, \mathrm{~V}}[\mathrm{~mm}]$	$\psi_{\mathrm{ec} 1, \mathrm{~N}}$	$\mathrm{e}_{\mathrm{c} 2, \mathrm{~V}}[\mathrm{~mm}]$	$\psi_{\mathrm{ec} 2, \mathrm{~N}}$	$\psi_{\mathrm{s}, \mathrm{N}}$	$\psi_{\mathrm{re}, \mathrm{N}}$	$\psi_{\mathrm{M}, \mathrm{N}}$
0.0	1.000	0.0	1.000	1.000	1.000	1.000

k_{1}	$\mathrm{~N}_{\mathrm{Rk}, \mathrm{c}}^{0}[\mathrm{kN}]$	$\gamma_{\mathrm{M}, \mathrm{c}, \mathrm{p}}$	$\mathrm{V}_{\mathrm{Rd}, \mathrm{cp}}[\mathrm{kN}]$	$\mathrm{V}_{\mathrm{Ed}}[\mathrm{kN}]$
7.700	43.490	3.000	83.500	57.983

Group anchor ID

Hilti PROFIS Engineering 3.0.94
www.hilti.com.hk

Company:		Page:	
Address:	Specifier:	5	
Phone I Fax:	1a	E-Mail:	
Design:		Date:	$23 / 5 / 2024$
Fastening point:			

4.3 Concrete edge failure in direction $y+$

$\mathrm{V}_{\mathrm{Ed}} \leq$	$=\frac{V_{R k, \mathrm{c}}}{\gamma_{M, \mathrm{c}}}$	EN 1992-4, Table 7.2
$\mathrm{V}_{\mathrm{Rk}, \mathrm{c}}$	$=k_{T} \cdot V_{R k, c}^{0} \cdot \frac{A_{c, V}}{A_{c, V}^{0}} \cdot \psi_{s, V} \cdot \psi_{h, V} \cdot \psi_{\alpha, V} \cdot \psi_{e c, V} \cdot \psi_{r e, V}$	EN 1992-4, Eq. (7.40)
$\mathrm{V}_{\mathrm{Rk}, \mathrm{c}}^{0}$	$=\mathrm{k}_{9} \cdot \mathrm{~d}_{\text {nom }}^{\alpha} \cdot l_{\mathrm{f}}^{\beta} \cdot \sqrt{\mathrm{f}_{\mathrm{ck}}} \cdot \mathrm{c}_{1}^{1,5}$	EN 1992-4, Eq. (7.41)
α	$=0.1 \cdot\left(\frac{l_{f}}{c_{1}}\right)^{0,5}$	EN 1992-4, Eq. (7.42)
β	$=0.1 \cdot\left(\frac{d_{\text {nom }}}{c_{1}}\right)^{0,2}$	EN 1992-4, Eq. (7.43)
$A_{c, V}^{0}$	$=4.5 \cdot \mathrm{c}_{1}^{2}$	EN 1992-4, Eq. (7.44)
$\psi_{s, V}$	$=0.7+0.3 \cdot \frac{\mathrm{c}_{2}}{1.5 \cdot \mathrm{c}_{1}} \leq 1.00$	EN 1992-4, Eq. (7.45)
$\psi_{\mathrm{h}, \mathrm{V}}$	$=\left(\frac{1.5 \cdot c_{1}}{h}\right)^{0.5} \geq 1.00$	EN 1992-4, Eq. (7.46)
ψ ec, ${ }^{\text {V }}$	$=\frac{1}{1+\left(\frac{2 \cdot e_{V}}{3 \cdot c_{1}}\right)} \leq 1.00$	EN 1992-4, Eq. (7.47)
$\psi_{\alpha, V}$	$=\sqrt{\frac{1}{\left(\cos \alpha_{V}\right)^{2}+\left(0.5 \cdot \sin \alpha_{V}\right)^{2}}} \geq 1.00$	EN 1992-4, Eq. (7.48)

$\mathrm{I}_{\mathrm{f}}[\mathrm{mm}]$	$\mathrm{d}_{\text {nom }}[\mathrm{mm}]$	k_{9}	α	β	$\mathrm{f}_{\mathrm{c}, \mathrm{cyl}}\left[\mathrm{N} / \mathrm{mm}^{2}\right]$
100.0	20.00	1.700	0.082	0.067	31.90

$\mathrm{c}_{1}[\mathrm{~mm}]$	$\mathrm{A}_{\mathrm{c}, \mathrm{V}}\left[\mathrm{mm}^{2}\right]$	$\mathrm{A}_{\mathrm{c}, \mathrm{V}}^{0}\left[\mathrm{~mm}^{2}\right]$
150.0	135,000	101,250

$\psi_{\mathrm{s}, \mathrm{V}}$	$\psi_{\mathrm{h}, \mathrm{V}}$	$\alpha_{\mathrm{V}}\left[{ }^{\circ}\right]$	$\psi_{\alpha, V}$	$\mathrm{e}_{\mathrm{c}, \mathrm{V}}[\mathrm{mm}]$	$\psi_{\mathrm{ec}, \mathrm{V}}$	$\psi_{\mathrm{re}, \mathrm{V}}$
1.000	1.000	90.00	2.000	0.0	1.000	1.000

$\mathrm{V}_{\mathrm{Rk}, \mathrm{c}}^{0}[\mathrm{kN}]$	k_{T}	$\gamma_{\mathrm{M}, \mathrm{c}}$	$\mathrm{V}_{\mathrm{Rd}, \mathrm{c}}[\mathrm{kN}]$	$\mathrm{V}_{\mathrm{Ed}}[\mathrm{kN}]$
30.646	1.0	3.000	27.241	20.500

5 Displacements (highest loaded anchor)

Short term loading:

$$
\begin{aligned}
\mathrm{N}_{\mathrm{Sk}} & =0.000[\mathrm{kN}] \\
\mathrm{V}_{\mathrm{Sk}} & =10.738[\mathrm{kN}]
\end{aligned}
$$

$$
\delta_{N}=-[\mathrm{mm}]
$$

$$
\delta_{v}=0.4295[\mathrm{~mm}]
$$

$$
\delta_{\mathrm{NV}}=-[\mathrm{mm}]
$$

Long term loading:

$\mathrm{N}_{\mathrm{Sk}}=0.000[\mathrm{kN}]$	δ_{N}	$=-[\mathrm{mm}]$
$\mathrm{V}_{\mathrm{Sk}}=10.738[\mathrm{kN}]$	δ_{V}	$=0.6443[\mathrm{~mm}]$
	δ_{NV}	$=-[\mathrm{mm}]$

Comments: Tension displacements are valid with half of the required installation torque moment for uncracked concrete! Shear displacements are valid without friction between the concrete and the anchor plate! The gap due to the drilled hole and clearance hole tolerances are not included in this calculation!

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

Hilti PROFIS Engineering 3.0.94

www.hilti.com.hk

Company:		Page:	
Address:	Specifier:	6	
Phone I Fax:	1a	E-Mail:	
Design:	Date:	$23 / 5 / 2024$	
Fastening point:			

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Design is only valid if hole is filled to remove clearance, clearance as per EN 1992-4 Table 6.1
- Checking the transfer of loads into the base material is required in accordance with EN 1992-4, Annex A!
- The design is only valid if the clearance hole in the fixture is not larger than the value given in Table 6.1 of EN 1992-4! For larger diameters of the clearance hole see section 6.2.2 of EN 1992-4!
- The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to be followed to ensure a proper installation.
- For the determination of the $\psi_{\text {rev }}$ (concrete edge failure) the minimum concrete cover defined in the design settings is used as the concrete cover of the edge reinforcement.
- The characteristic bond resistances depend on the return period (service life in years): 100

Fastening meets the design criteria!

Hilti PROFIS Engineering 3.0.94

www.hilti.com.hk

Company:		Page:
Address:	Specifier:	
Phone I Fax:	1	E-Mail:
Design:	1 a	Date:
Fastening point:		

7 Installation data

Anchor plate, steel: EN S275; $E=205,000.00 \mathrm{~N} / \mathrm{mm}^{2} ; f_{y k}=275.00 \mathrm{~N} / \mathrm{mm}^{2}$

Profile: IPB/HEB, IPB 340 / HE 340 B; (L x W x T x FT) = 340.0 mm x 300.0
$\mathrm{mm} \times 12.0 \mathrm{~mm} \times 21.5 \mathrm{~mm}$
Hole diameter in the fixture (pre-setting) : $\mathrm{d}_{\mathrm{f}}=22.0 \mathrm{~mm}$
Hole diameter in the fixture (through fastening) : $\mathrm{d}_{\mathrm{f}}=24.0 \mathrm{~mm}$
Plate thickness (input): 15.0 mm
Recommended plate thickness: not calculated
Drilling method: Hammer drilled
Cleaning: No cleaning of the drilled hole is required

Anchor type and diameter: HIT-HY 200-R 100 years + HIT-Z-R M20
Item number: 2018438 HIT-Z-R M20x215 (element) /
2045036 HIT-HY 200-R (adhesive)
Maximum installation torque: 215 Nm
Hole diameter in the base material: 22.0 mm
Hole depth in the base material: 156.0 mm
Minimum thickness of the base material: 200.0 mm

Hilti SAFEset HIT-Z non-cleaning bonded expansion anchor with HIT-HY 200 injection mortar with 100 mm embedment h_ef, M20, Stainless steel, Hammer drilled installation per ETA 12/0028, with annular gaps filled with Hilti Filling set or any suitable gap solutions

7.1 Recommended accessories

Drilling Cleaning Setting

- Suitable Rotary Hammer
- No accessory required
- Properly sized drill bit

Setting

- Dispenser including cassette and mixer
- Torque wrench

Coordinates Anchor [mm]

Anchor	\mathbf{x}	\mathbf{y}	$\mathbf{c}_{-\mathbf{x}}$	$\mathbf{c}_{+\mathbf{x}}$	$\mathbf{c}_{-\mathbf{y}}$	$\mathbf{c}_{+\mathbf{y}}$
1	-75.0	-75.0	-	-	-	300.0
2	75.0	-75.0	-	-	-	300.0
3	-75.0	75.0	-	-	-	150.0
4	75.0	75.0	-	-	-	150.0

Hilti PROFIS Engineering 3.0.94
www.hilti.com.hk

Company:		Page:	
Address:	Specifier:	8	
Phon I Fax:	1	E-Mail:	
Design:	Date:		$23 / 5 / 2024$
Fastening point:			

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

According To The Above Sap 2000 Calculation Results:

MB1:
Mmax $=488.26 \mathrm{kN} \cdot \mathrm{m}$
Vmax $=330.96 \mathrm{kN}$
MB1 usable UC $356 \times 406 \times 287$

MB2:
Mmax=550.49kN•m
Vmax=357.27kN
MB2 usable UC $305 \times 305 \times 158$

The section, weld and bolt are verified and the scheme is feasible
The R/F layer meets the requirements of the retrofit function

3.0 Usage change Feasibility Calculation

According to record plan:

FLOOR	SDL(Ex.)		SDL(New)		$\begin{gathered} \text { LL (Ex.) } \\ (\mathrm{kPa}) \end{gathered}$	LL(New) (kPa)	Loading Comparison
	Finishing (kPa)	Service (kPa)	Finishing (kPa)	Service (kPa)			
R/F	No data	No data	Remain unchanged	Remain unchanged	$\begin{gathered} 2 \\ \text { (Assume) } \end{gathered}$	2	Usage of Roof floor remains unchanged and hence, no adverse effect to beam and slab. Additional water tank and pump will be supported by columns directly which will be checked in the next section.
UD/F	No data	No data	1.5	0.5	8	5	$\begin{aligned} & \text { Existing Load }=8 \mathrm{kPa}>\mathrm{New} \\ & \text { Load }=7 \mathrm{kPa} \end{aligned}$
MD/F	No data	No data	1.5	0.5	8	5	$\begin{aligned} & \text { Existing Load }=8 \mathrm{kPa}>\text { New } \\ & \text { Load }=7 \mathrm{kPa} \end{aligned}$

In the proposed usage change from pier decks to exhibition hall, the new design load is less than the existing load at UD/F and MD/F. Therefore, the slabs and beams at UD/F and MD/F are capable for the proposed usage change.

For the roof floor, the existing beams and slabs will have no adverse effect as the usage will not change.
However, the columns will subject to new loading due to new water tanks and pumps at roof floor, further checking required in the next section.

4.0 Column And Pile Feasibility Calculation

	Job Existing Checking	Job no.
Section: \quad B17 Axial force-1	By:	Sheet no.
Subject: COLUMN	Date: May 11	

R/F Existing Building:

Density of concrete:24.5 KN/m Thickness of Slab max. to be 150 mm .
Affected Area: $(5.7 / 2+5.7 / 2) *(3.9 / 2+6.2 / 2)=28.79 \mathrm{~m}^{2}$
Reinforcement: 8 T25
SDL: 3.0 KPa(Finishing) +0.5 (Service) $=3.5 \mathrm{KPa}$ (Assume, No Record)
LL: 2 KPa (Assume, Dormitory, No record)
DL:
Slab: $s / w=24.5 * 0.15(\mathrm{t})=3.7 \mathrm{KPa}$
Beam:
17a: $s / w=24.5 * 0.3 * 0.575 * 3.9 / 2$ (length of beam) $=8.24 \mathrm{KN}$
$17 \mathrm{~b}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 / 2$ (length of beam) $=13.1 \mathrm{KN}$
b15: $s / w=24.5 * 0.45 * 0.6 * 5.7 / 2($ length of beam $)=18.86 \mathrm{KN}$
b17: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.6 * 5.7 / 2($ length of beam $)=18.86 \mathrm{KN}$
16b: $s / w=24.5 * 0.3 * 0.575 * 6.2 /(2 * 2)$ (length of beam) $=6.55 \mathrm{KN}$
18b: $\mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 /(2 * 2) \quad$ (length of beam) $=6.55 \mathrm{KN}$
Column: s/w $=24.5 * 0.45 \times 0.45 *(10.65-7.3) \mathrm{m}($ Height of Column) $=16.62 \mathrm{KN}$
B17 R/F Axial force $=(3.7+3.5) * 28.79+8.24+13.1+18.86+18.86+6.55+6.55+16.62+2 * 28.79$ $=353.65 \mathrm{KN}$

Add water tank load:

MB1: UC 356x406x287kg/m; s/w=287 * 9.8/1000=2.9 kN/m
MB2: UC $305 \times 305 \times 158 \mathrm{~kg} / \mathrm{m}$; s/w=158 * 9.8/1000 $=1.6 \mathrm{kN} / \mathrm{m}$ Beam force:

MB1: $5.7 / 2 * 2.9=8.265 \mathrm{KN}$;
MB2: $6.2 / 2 * 1.6=5 \mathrm{KN}$
Slab : DD=2Kpa; DL=20Kpa;
$\mathrm{A}_{\text {slab }}=6.2 / 2 * 5.7 / 2=8.84 \mathrm{~m}^{2}$
$\mathrm{A}_{\text {tank }}=4 / 2 * 3 / 2=3 \mathrm{~m}^{2}$;
$\mathrm{s} / \mathrm{w}=2 * 8.84+20 * 3=77.68 \mathrm{KN}$
All New Axial Force $=77.68+8.265+5=90.945 \mathrm{KN}=91 \mathrm{KN}$.

	Job Existing Checking	Job no.
Section: B17 Axial force-2	By:	Date: May 11
Subject: COLUMN	Sheet no.	

UD/F Existing Building:
Density of concrete: $24.5 \mathrm{KN} / \mathrm{m}^{3}$ Thickness of Slab max. to be 175 mm .
Affected Area: $(5.7 / 2+5.7 / 2) *(3.9 / 2+6.2 / 2)=27.79 \mathrm{~m}^{2}$
Reinforcement: 8 T25
SDL: 1.5 KPa (Finishing) +0.5 (Service) $=2 \mathrm{KPa}$ (Assume, No record)
LL: 5 KPa (Assume, Dormitory, No record)
DL:
Slab: $24.5 * 0.175(\mathrm{t})=4.3 \mathrm{KPa}$
Beam:
17a: $s / w=24.5 * 0.3 * 0.6 * 3.9 / 2($ length of beam $)=8.6 \mathrm{KN}$
$17 \mathrm{~b}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.6 * 6.2 / 2($ length of beam $)=13.671 \mathrm{KN}$
b15: $s / w=24.5 * 0.45 * 0.86 * 5.7 / 2$ (length of beam) $=27 \mathrm{KN}$
b17: $s / w=24.5 * 0.45 * 0.625 * 5.7 / 2$ (length of beam) $=19.64 \mathrm{KN}$
$16 \mathrm{~b}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.6 * 6.2 /(2 * 2)$ (length of beam) $=6.84 \mathrm{KN}$
18b: $\mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.6 * 6.2 /(2 * 2)$ (length of beam) $=6.84 \mathrm{KN}$
Column: s/w= $24.5 * 0.45 \times 0.45 *(7.3-4) \quad$ (Height of Column) $=16.37 \mathrm{KN}$
B17 UD/F Axial force $=(4.3+2) * 27.79+8.6+13.671+27+19.64+6.84+6.84+16.37+5 * 27.79$ $=412.99 \mathrm{KN}$

MD/F Existing Building:
Density of concrete:24.5 KN/m ${ }^{3}$ Thickness of Slab max. to be 200 mm .
Affected Area: $(5.7 / 2+5.7 / 2) *(3.9 / 2+6.2 / 2)=27.79 \mathrm{~m}^{2}$
Reinforcement: 8 T25
SDL: $1.5 \mathrm{KPa}($ Finishing) +0.5 (Service) $=2 \mathrm{KPa}$ (Assume, No record)
LL: 5 KPa (Assume, Dormitory, No record)
DL:
Slab: $24.5 * 0.2(\mathrm{t})=4.9$ Кра
Beam:
17a: $24.5 * 0.45 * 0.75 * 3.9 / 2$ (length of beam) $=16.12 \mathrm{KN}$
17b: $24.5 * 0.45 * 0.75 * 6.2 / 2$ (length of beam) $=25.63 \mathrm{KN}$
b15: $24.5 * 0.45 * 1.095 * 5.7 / 2$ (length of beam) $=34.4 \mathrm{KN}$
UPPER DECK PLAN

17: $24.5 * 0.45 * 0.775 * 5.7 / 2$ (length of beam) $=24.35 \mathrm{KN}$
16b: $24.5 * 0.45 * 0.75 * 6.2 /(2 * 2) \quad$ (length of beam) $=12.82 \mathrm{KN}$
18b: $24.5 * 0.45 * 0.75 * 6.2 /(2 * 2) \quad$ (length of beam) $=12.82 \mathrm{KN}$
Footing: $24.5 * 2.4 \times 1.4 * 1.85 \mathrm{~m}$ (Height of cap) $=152.3 \mathrm{KN}$
B17 MD/F Axial force $=(4.9+2) * 27.79+16.12+25.63+34.4+24.35+12.82+12.82+152.3+5 * 27.79$ $=609.141 \mathrm{KN}$

$\mathrm{P}_{\mathrm{B} 17}=353.65+412.99+609.141+91=1466.781=1467 \mathrm{kN}$

	Job Existing Checking	Job no.	
Section:	B19 Axial force-1	By:	Sheet no.
Subject: COLUMN	Date: May 11		

R/F Existing Building:

Density of concrete:24.5 KN/m Thickness of Slab max. to be 150 mm .
Affected Area: $(5.7 / 2+4.0 / 2) *(3.9 / 2+6.2 / 2)=24.49 \mathrm{~m}^{2}$
Reinforcement: 8 T25
SDL: 3.0 KPa (Finishing) +0.5 (Service) $=3.5 \mathrm{KPa}$ (Assume, No Record)
LL: 2 KPa (Assume, Dormitory, No record)
DL:
Slab: $\mathrm{s} / \mathrm{w}=24.5 * 0.15(\mathrm{t})=3.7 \mathrm{KPa}$
Beam:
19a: $\mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 3.9 / 2$ (length of beam) $=8.24 \mathrm{KN}$
19b: $\mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 / 2$ (length of beam) $=13.1 \mathrm{KN}$
b17: $s / w=24.5 * 0.45 * 0.6 * 5.7 / 2$ (length of beam) $=18.85 \mathrm{KN}$
b19: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.6 * 4 / 2$ (length of beam) $=13.23 \mathrm{KN}$
18b: $\mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 /(2 * 2)$ (length of beam) $=6.55 \mathrm{KN}$
Column: s/w= $24.5 * 3.14 \times 0.25 * 0.25 * 3.45 \mathrm{~m}($ Height of Column) $=16.59 \mathrm{KN}$
B19 R/F Axial force $=(3.7+3.5) * 24.49+8.24+13.1+18.85+13.23+6.55+16.59+2 * 24.49$ $=301.87 \mathrm{KN}$

Add water tank load:
MB1: UC $356 x 406 x 287 \mathrm{~kg} / \mathrm{m} ; \mathrm{s} / \mathrm{w}=287 * 9.8 / 1000=2.9 \mathrm{kN} / \mathrm{m}$
MB2: UC $305 \times 305 x 158 \mathrm{~kg} / \mathrm{m}$; s/w=158 * 9.8/1000=1.6 kN/m
Beam force:

$$
\mathrm{MB} 1: \mathrm{s} / \mathrm{w}=(5.7+4) / 2 * 2.9=14.1 \mathrm{KN} ;
$$

MB2: $\mathrm{s} / \mathrm{w}=2 * 6.2 / 2 * 1.6=10 \mathrm{KN}$;
Slab: D=2kpa; DL=20kpa;

$$
\begin{aligned}
& \mathrm{A}_{\text {slab }}=6.2 / 2 *(5.7 / 2+4 / 2)=15 \mathrm{~m}^{2} ; \\
& \mathrm{A}_{\text {tank }}=4 / 2 *(5.7 / 2+4 / 2)=9.7 \mathrm{~m}^{2} ; \\
& \mathrm{s} / \mathrm{w}=\mathrm{DD}+\mathrm{DL}: 2 * 15+20 * 9.7=224 \mathrm{KN}
\end{aligned}
$$

All New Axial Force $=224+14.1+10.0=248.1 \mathrm{KN}=249 \mathrm{KN}$

	Job Existing Checking	Job no.
Section: B19 Axial force-2	By:	Sheet no.
Subject: COLUMN	Date: May 11	

UD/F Existing Building:

Density of concrete: $24.5 \mathrm{KN} / \mathrm{m}^{3}$ Thickness of Slab max. to be 175 mm .
Affected Area: $(5.7 / 2+4.0 / 2) *(3.9 / 2+6.2 / 2)=24.49 \mathrm{~m}^{2}$
Reinforcement: 8T25
SDL: 1.5 KPa (Finishing) +0.5 (Service) $=2 \mathrm{KPa}$ (Assume, No record)
LL: 5 KPa (Assume, Dormitory, No record)
DL:
Slab: $24.5 * 0.175(\mathrm{t})=4.3 \mathrm{KPa}$
Beam:
19a: $\mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.6 * 3.9 / 2$ (length of beam) $=8.6 \mathrm{KN}$
19b: $\mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.6 * 6.2 / 2$ (length of beam) $=13.67 \mathrm{KN}$
b17: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.625 * 5.7 / 2($ length of beam $)=19.64 \mathrm{KN}$
b19: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.625 * 4 / 2($ length of beam $)=13.78 \mathrm{KN}$
$18 \mathrm{~b}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.6 * 6.2 /(2 * 2)$ (length of beam) $=6.84 \mathrm{KN}$
Column: s/w=24.5*3.14*0.25*0.25*3.3m(Height of Column) $=15.87 \mathrm{KN}$
B19 UD/F Axial force $=(4.3+2) * 24.49+8.6+13.67+19.64+13.78+6.84+15.87+5 * 24.49$

$=355.14 \mathrm{KN}$

MD/F Existing Building:
Density of concrete:24.5 KN/m Thickness of Slab max. to be 200 mm .
Affected Area: $(5.7 / 2+4.0 / 2) *(3.9 / 2+6.2 / 2)=24.49 \mathrm{~m}^{2}$
Reinforcement: 8T25
SDL: 1.5 KPa (Finishing) +0.5 (Service) $=2 \mathrm{KPa}$ (Assume, No record)
LL: 5 KPa (Assume, Dormitory, No record)
DL:
Slab: $24.5 * 0.2(\mathrm{t})=4.9$ Кра
Beam:
19a: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.75 * 3.9 / 2$ (length of beam) $=16.12 \mathrm{KN}$
19b: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.75 * 6.2 / 2$ (length of beam) $=25.63 \mathrm{KN}$
b17: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.775 * 5.7 / 2$ (length of beam) $=24.35 \mathrm{KN}$

b19: s/w= $24.5 * 0.45 * 0.775 * 4 / 2$ (length of beam) $=17.09 \mathrm{KN}$
18b: $s / w=24.5 * 0.45 * 0.75 * 6.2 /(2 * 2)$ (length of beam) $=12.82 \mathrm{KN}$
Pile cap: $\mathrm{s} / \mathrm{w}=24.5 * 2.4 * 1.3 * 1.85 \mathrm{~m}($ Height of Column) $=141.414 \mathrm{KN}$
B19 MD/F Axial force $=(4.9+2) * 24.49+16.12+25.63+24.35+17.09+12.82+141.414+5 * 24.49$
$=528.855 \mathrm{KN}$

$\mathbb{P}_{\mathrm{B} 19}=301.87+355.14+528.855+249=1434.862=1435 \mathrm{kN}$

| | Job
 Existing Checking | Job no. |
| :---: | :--- | :--- | :--- |
| Section: \quad B20 Axial force-1 | By: | Sheet no. |
| Subject: COLUMN | Date: May 11 | |

R/F Existing Building:

Density of concrete:24.5 KN/m ${ }^{3}$ Thickness of Slab max. to be 150mm.
Affected Area: $(1.2+4.0 / 2) *(3.9 / 2+6.2 / 2)=16.16 \mathrm{~m}^{2}$
Reinforcement: 8 T25
SDL: 3.0 KPa (Finishing) +0.5 (Service) $=3.5 \mathrm{KPa}$ (Assume, No Record)
LL: 2 KPa (Assume, Dormitory, No record)
DL:
Slab: $\mathrm{s} / \mathrm{w}=24.5 * 0.15$ (thk.) $=3.7 \mathrm{KPa}$
Beam:
20a: $s / w=24.5 * 0.3 * 0.575 * 3.9 / 2$ (length of beam) $=8.24 \mathrm{KN}$
$20 \mathrm{~b}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 / 2$ (length of beam) $=13.1 \mathrm{KN}$
b19: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.6 * 4 / 2$ (length of beam) $=13.23 \mathrm{KN}$
Column: s/w= $24.5 * 0.45 * 0.45 * 3.45 \mathrm{~m}$ (Height of Column) $=17.12 \mathrm{KN}$
B20 R/F Axial force $=(3.7+3.5) * 16.16+8.24+13.1+13.23+17.12+2 * 16.16=200.36 \mathrm{KN}$

Add water tank load:

MB1: UC $356 \times 406 \times 287 \mathrm{~kg} / \mathrm{m}$; s/w=287*9. $8 / 1000=2.9 \mathrm{kN} / \mathrm{m}$
MB2: UC $305 \times 305 \times 158 \mathrm{~kg} / \mathrm{m}$; s/w=158*9. $8 / 1000=1.6 \mathrm{kN} / \mathrm{m}$ Beam force:

```
MB1: s/w= 4/2*2.9= 5.8 KN;
```

MB2: $s / w=6.2 / 2 * 1.6=5.0 \mathrm{KN}$;
Slab: DD=2Kpa; DL=20Kpa;

$$
\begin{aligned}
& \mathrm{A}_{\text {slata }}=6.2 / 2 * 4 / 2=6.2 \mathrm{~m}^{2} \\
& \mathrm{~A}_{\text {tank }}=4 / 2 * 4 / 2=4 \mathrm{~m}^{2} \\
& \mathrm{~s} / \mathrm{w}=: 2 * 6.2+30 * 4=132.4 \mathrm{KN}
\end{aligned}
$$

all new load P2: $132.4+5.8+5=143.2 \mathrm{KN}=144 \mathrm{KN}$.

	Job Existing Checking	Job no.
Section:B20 Axial force-2	By:	Sheet no.
Subject: COLUMN	Date: May 11	

UD/F Existing Building:
Density of concrete: $24.5 \mathrm{KN} / \mathrm{m}^{3}$ Thickness of Slab max. to be 175 mm .
Affected Area: $4.0 / 2 *(3.9 / 2+6.2 / 2)=10.1 \mathrm{~m}^{2}$
Reinforcement: 8T25
SDL: 1.5 KPa (Finishing) +0.5 (Service) $=2 \mathrm{KPa}$ (Assume, No record)
LL: 5 KPa (Assume, Dormitory, No record)
DL:
Slab: $24.5 * 0.175(\mathrm{t})=4.3 \mathrm{KPa}$
Beam:
20a: $s / w=24.5 * 0.3 * 0.55 * 3.9 / 2($ length of beam $)=7.88 \mathrm{KN}$
$20 \mathrm{~b}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.6 * 6.2 / 2($ length of beam $)=13.67 \mathrm{KN}$
b19: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.625 * 4 / 2$ (length of beam) $=13.78 \mathrm{KN}$
Column: $24.5 * 0.45 * 0.45 * 3.3 \mathrm{~m}$ (Height of Column) $=16.37 \mathrm{KN}$
B20 UD/F Axial force $=(4.3+2) * 10.1+7.88+13.67+13.78+16.37+5 * 10.1=165.83 \mathrm{KN}$

MD/F Existing Building:
Density of concrete: $24.5 \mathrm{KN} / \mathrm{m}^{3}$ Thickness of Slab max. to be 200 mm .
Affected Area: $(4.0 / 2+1.2) *(3.9 / 2+6.2 / 2)=16.16 \mathrm{~m}^{2}$

nforcement : 8125
SDL: 1.5 KPa (Finishing) +0.5 (Service) $=2 \mathrm{KPa}$ (Assume, No record)
LL: 5 KPa (Assume, Dormitory, No record)
DL:
Slab: $24.5 * 0.2(\mathrm{t})=4.9$ Kpa
Beam:
20a: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 1 * 3.9 / 2($ length of beam $)=7.88 \mathrm{KN}$

20b: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.75 * 6.2 / 2($ length of beam $)=25.63 \mathrm{KN}$
b19: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.775 * 4 / 2$ (length of beam) $=17.09 \mathrm{KN}$
section E-E
Pile cap: $\mathrm{s} / \mathrm{w}=24.5 \mathrm{x}(2.22 * 3.375 \mathrm{~m}($ Height of Column $)+0.615 *(1.15+1) * 0.525)=200.57 \mathrm{KN}$
$\mathrm{B} 20 \mathrm{MD} / \mathrm{F}$ Axial force $=(4.9+2) * 16.16+7.88+25.63+17.09+200.57+5 * 16.16=443.474 \mathrm{KN}$

$\mathrm{P}_{\text {в20 }}=200.36+165.83+443.474+144=953.664 \mathrm{kN}$

	Job	Existing Checking	Job no.
		By:	Sheet no.
Section: C17 Axial force-1	Date: May 11		
Subject: \quad COLuMN			

R/F Existing Building:

Density of concrete: $24.5 \mathrm{KN} / \mathrm{m}^{3}$ Thickness of Slab max. to be 150 mm .
Affected Area: $(5.7 / 2+5.7 / 2) *(6.2 / 2+6.2 / 2)=35.34 \mathrm{~m}^{2}$
Reinforcement: 8 T25
SDL: 3.0 KPa (Finishing) +0.5 (Service) $=3.5 \mathrm{KPa}$ (Assume, No Record)
LL: 2 KPa (Assume, Dormitory, No record)
DL:
Slab: $24.5 * 0.15(\mathrm{t})=3.7 \mathrm{KPa}$
Beam:
$17 \mathrm{~b}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 / 2($ length of beam) $=13.1 \mathrm{KN}$
$17 \mathrm{c}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 / 2$ (length of beam) $=13.1 \mathrm{KN}$
$\mathrm{c} 15: \mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.75 * 5.7 / 2$ (length of beam) $=23.57 \mathrm{KN}$
c17: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.75 * 5.7 / 2$ (length of beam) $=23.57 \mathrm{KN}$
$16 \mathrm{~b}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 /(2 * 2)$ (length of beam) $=6.55 \mathrm{KN}$
$16 \mathrm{c}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 /(2 * 2)$ (length of beam) $=6.55 \mathrm{KN}$
$18 \mathrm{~b}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 /(2 * 2)$ (length of beam) $=6.55 \mathrm{KN}$
$18 \mathrm{c}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 /(2 * 2)$ (length of beam) $=6.55 \mathrm{KN}$
Column: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 \mathrm{x} 0.45 * 3.45 \mathrm{~m}$ (Height of Column) $=17.12 \mathrm{KN}$
C17 R/F Axial force $=(3.7+3.5) * 35.34+13.1+13.1+23.57+23.57+6.55 * 4+17.12+2 * 35.34$ $=441.79 \mathrm{KN}$

Add water tank load:
MB1: UC $356 \times 406 \times 287 \mathrm{~kg} / \mathrm{m}$; $\mathrm{s} / \mathrm{w}=287 * 9.8 / 1000=2.9 \mathrm{kN} / \mathrm{m}$
MB2: UC $305 \times 305 \times 158 \mathrm{~kg} / \mathrm{m}$; s/w=158 * 9.8/1000=1. $6 \mathrm{kN} / \mathrm{m}$
Beam force:
MB1: $\mathrm{s} / \mathrm{w}=5.7 / 2 * 2.9=8.3 \mathrm{KN}$;
MB2: $\mathrm{s} / \mathrm{w}=2 * 6.2 / 2 * 1.6=10 \mathrm{KN}$;
Slab: $\mathrm{DD}=2 \mathrm{Kpa}$; $\mathrm{DL}=20 \mathrm{Kpa}$;
$\mathrm{A}_{\text {slab }}=6.2 * 5.7 / 2=17.67 \mathrm{~m}^{2}$;
$\mathrm{A}_{\text {tank }}=4 * 3 / 2=6.0 \mathrm{~m}^{2}$;
$\mathrm{s} / \mathrm{w}=\mathrm{DD}+\mathrm{DL}=2 * 17.67+20 * 6.0=155.34 \mathrm{KN}$
All New Axial Force $=155.34+8.3+10=173.64 \mathrm{KN}=174 \mathrm{KN}$.

Checking				
Density of concrete: $24.5 \mathrm{KN} / \mathrm{m}^{3}$ Thickness of Slab max. to be 175 mm . Affected Area: $(5.7 / 2+5.7 / 2) *(6.2 / 2+6.2 / 2)=35.34 \mathrm{~m}^{2}$ Reinforcement: 8T25 SDL: 1.5 KPa (Finishing) +0.5 (Service) $=2 \mathrm{KPa}$ (Assume, No record) LL: 5 KPa (Assume, Dormitory, No record) DL: Slab: $24.5 * 0.175(\mathrm{t})=4.3 \mathrm{KPa}$ Beam: 17b: s/w $=24.5 * 0.3 * 0.6 * 6.2 / 2($ length of beam $)=13.67 \mathrm{KN}$ $17 \mathrm{c}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.6 * 6.2 / 2$ (length of beam) $=13.67 \mathrm{KN}$ $\mathrm{c} 15: \mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.625 * 5.7 / 2($ length of beam $)=19.64 \mathrm{KN}$ c17: $s / w=24.5 * 0.45 * 0.625 * 5.7 / 2$ (length of beam) $=19.64 \mathrm{KN}$ $16 \mathrm{~b}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 /(2 * 2)($ length of beam $)=6.84 \mathrm{KN}$ $16 \mathrm{c}: ~ \mathrm{~s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 /(2 * 2)($ length of beam $)=6.84 \mathrm{KN}$ $18 \mathrm{~b}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 /(2 * 2)($ length of beam $)=6.84 \mathrm{KN}$ $18 \mathrm{c}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 /(2 * 2)($ length of beam $)=6.84 \mathrm{KN}$				
Column: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 \mathrm{x} 0.45 * 3.3 \mathrm{~m}($ Height of Column) $=16.37 \mathrm{KN}$				
$=508.55 \mathrm{KN}$ MD/F Existing Building: Density of concrete: $24.5 \mathrm{KN} / \mathrm{m}^{3}$ Thickness of Slab max. to be 200 mm . Affected Area: $(5.7 / 2+5.7 / 2) *(6.2 / 2+6.2 / 2)=35.34 \mathrm{~m}^{2}$ Reinforcement: 8T25 SDL: 1.5 KPa (Finishing) +0.5 (Service) $=2 \mathrm{KPa}$ (Assume, No record) LL: 5 KPa (Assume, Dormitory, No record) DL: Slab: $24.5 * 0.2(\mathrm{t})=4.9 \mathrm{Kpa}$ Beam: 17b: $s / w=24.5 * 0.45 * 0.75 * 6.2 / 2$ (length of beam) $=25.63 \mathrm{KN}$ $17 \mathrm{c}: \mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.75 * 6.2 / 2$ (length of beam) $=25.63 \mathrm{KN}$ $\mathrm{c} 15: \mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.775 * 5.7 / 2$ (length of beam) $=24.35 \mathrm{KN}$ c17: $s / w=24.5 * 0.45 * 0.775 * 5.7 / 2$ (length of beam) $=24.35 \mathrm{KN}$ $16 \mathrm{~b}: \mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.75 * 6.2 /(2 * 2)($ length of beam $)=12.82 \mathrm{KN}$ $16 \mathrm{c}: \mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.75 * 6.2 /(2 * 2)($ length of beam $)=12.82 \mathrm{KN}$ $18 \mathrm{~b}: \mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.75 * 6.2 /(2 * 2)($ length of beam $)=12.82 \mathrm{KN}$ $18 \mathrm{c}: \mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.75 * 6.2 /(2 * 2)($ length of beam) $=12.82 \mathrm{KN}$ Pile cap: $\mathrm{s} / \mathrm{w}=24.5 * 1.3 * 2.6 * 1.85 \mathrm{~m}$ (Height of Column) $=153.2 \mathrm{KN}$ C17 MD/F Axial force $=(4.9+2) * 35.34+25.63 * 2+24.35 * 2+12.82 * 4+153.2+5 \times 35.34$ $=724.99 \mathrm{KN}$				

| | Job
 Existing Checking | Job no. |
| :---: | :--- | :--- | :--- |
| Section: C19 Axial force-1 | By: | Sheet no. |
| Subject: C0LUMN | Date: May 11 | |

R/F Existing Building:

Density of concrete:24.5 KN/m Thickness of Slab max. to be 150 mm .
Affected Area: $(5.7 / 2+4.0 / 2) *(6.2 / 2+6.2 / 2)=30.07 \mathrm{~m}^{2}$
Reinforcement: 8 T25
SDL: 3.0 KPa (Finishing) +0.5 (Service) $=3.5 \mathrm{KPa}$ (Assume, No Record)
LL: 2 KPa (Assume, Dormitory, No record)
DL:
Slab: $s / w=24.5 * 0.15(\mathrm{t})=3.7 \mathrm{KPa}$
Beam:
19b: $\mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 / 2($ length of beam) $=13.1 \mathrm{KN}$
$19 \mathrm{c}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 / 2($ length of beam $)=13.1 \mathrm{KN}$
c 17 : $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.75 * 5.7 / 2$ (length of beam) $=23.57 \mathrm{KN}$
c19: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.75 * 4 / 2($ length of beam $)=16.54 \mathrm{KN}$
18b: $\mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 /(2 * 2)$ (length of beam) $=6.55 \mathrm{KN}$
$18 \mathrm{c}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 /(2 * 2) \quad$ (length of beam) $=6.55 \mathrm{KN}$
Column: $\mathrm{s} / \mathrm{w}=24.5 * 3.14 \times 0.25 * 0.25 * 3.45 \mathrm{~m}$ (Height of Column) $=16.59 \mathrm{KN}$
C19 R/F Axial force $=:(3.7+3.5) * 30.07+13.1+13.1+23.57+16.54+6.55 * 2+16.59+2 * 30.07$ $=372.64 \mathrm{KN}$

Add water tank load:

MB1: UC $356 x 406 x 287 \mathrm{~kg} / \mathrm{m} ; \mathrm{s} / \mathrm{w}=287 * 9.8 / 1000=2.9 \mathrm{kN} / \mathrm{m}$ MB2: UC $305 \times 305 \times 158 \mathrm{~kg} / \mathrm{m} ; \mathrm{s} / \mathrm{w}=158 * 9.8 / 1000=1.6 \mathrm{kN} / \mathrm{m}$ Beam force:

MB1: $s / w=(5.7+4) / 2 * 2.9=14.1 \mathrm{KN}$;
MB2: $\mathrm{s} / \mathrm{w}=2 * 2 * 6.2 / 2 * 1.6=20 \mathrm{KN}$;
Slab : DD=2Kpa; TANK1=10Kpa; TANK2=20Kpa;

$$
\mathrm{A}_{\text {slab }}=6.2 / 2 * 2 *(5.7 / 2+4 / 2)=30.07 \mathrm{~m}^{2} ;
$$

$\mathrm{A}_{\text {tankl }}=1.5 * 2.5=3.75 \mathrm{~m}^{2}$;
$A_{\text {tank } 2}=4 *(5.7 / 2+4 / 2)=19.4 \mathrm{~m}^{2}$ $\mathrm{s} / \mathrm{w}=2 * 30.07+20 * 19.4+10 * 3.75=485.64 \mathrm{KN}$
All New Axial Force $=485.64+14.1+20=519.74 \mathrm{KN}=520 \mathrm{KN}$.

| | Job
 Existing Checking | Job no. |
| :--- | :--- | :--- | :--- |
| Section: C19 Axial force-2 | By: | Sheet no. |
| Subject: COLUMN | Date: May 11 | |

UD/F Existing Building:
Density of concrete:24.5 KN/m ${ }^{3}$ Thickness of Slab max. to be 175 mm .
Affected Area: $(5.7 / 2+4.0 / 2) *(6.2 / 2+6.2 / 2)=30.07 \mathrm{~m}^{2}$
Reinforcement: 8 T 25
SDL: 1.5 KPa (Finishing) +0.5 (Service) $=2 \mathrm{KPa}$ (Assume, No record)
LL: 5 KPa (Assume, Dormitory, No record)
DL:
Slab: $24.5 * 0.175(\mathrm{t})=4.3 \mathrm{KPa}$
Beam:
19b: $s / w=24.5 * 0.3 * 0.6 * 6.2 / 2$ (length of beam) $=13.67 \mathrm{KN}$
$19 \mathrm{c}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.6 * 6.2 / 2($ length of beam $)=13.67 \mathrm{KN}$
$\mathrm{c} 17: \mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.625 * 5.7 / 2$ (length of beam) $=19.64 \mathrm{KN}$
c19: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.625 * 4 / 2($ length of beam $)=13.78 \mathrm{KN}$
$18 \mathrm{~b}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.6 * 6.2 /(2 * 2)$ (length of beam $)=6.84 \mathrm{KN}$
$18 \mathrm{c}: ~ \mathrm{~s} / \mathrm{w}=24.5 * 0.3 * 0.6 * 6.2 /(2 * 2)$ (length of beam) $=6.84 \mathrm{KN}$
Column: s/w=24.5*3.14 x0.25*0.25*3.3m(Height of Column) $=15.87 \mathrm{KN}$
C19 UD/F Axial force $=(4.3+2) * 30.07+13.67+13.67+19.64+13.78+6.84 * 2+15.87+5 * 30.07$ $=430.1 \mathrm{KN}$

UPPER DECK PLAN

MD/F Existing Building:

Density of concrete:24.5 KN/m Thickness of Slab max. to be 200 mm .
Affected Area: $(5.7 / 2+4.0 / 2) *(6.2 / 2+6.2 / 2)=30.07 \mathrm{~m}^{2}$
Reinforcement: 8 T25
SDL: 1.5 KPa (Finishing) +0.5 (Service) $=2 \mathrm{KPa}$ (Assume, No record)
LL: 5 KPa (Assume, Dormitory, No record)
DL:
Slab: $24.5 * 0.2(\mathrm{t})=4.9$ Кра
Beam:
19b: $s / w=24.5 * 0.45 * 0.75 * 6.2 / 2$ (length of beam) $=25.63 \mathrm{KN}$
$19 \mathrm{c}: \mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.75 * 6.2 / 2$ (length of beam) $=25.63 \mathrm{KN}$
$\mathrm{c} 17: \mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.775 * 5.7 / 2$ (length of beam) $=24.35 \mathrm{KN}$
c19: $s / w=24.5 * 0.45 * 0.775 * 4 / 2($ length of beam $)=17.09 \mathrm{KN}$
18b: $s / w=24.5 * 0.45 * 0.75 * 6.2 /(2 * 2)($ length of beam $)=12.82 \mathrm{KN}$
$18 \mathrm{c}: \mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.75 * 6.2 /(2 * 2) \quad$ (length of beam) $=12.82 \mathrm{KN}$
Pile cap: $s / w=24.5 * 2.4 \times 1.3 * 1.85$ (Height of cap) $=141.414 \mathrm{KN}$
C19 MD/F Axial force $=(4.9+2) * 30.07+25.63 * 2+24.35+17.09+$
$12.82 * 2+141.414+5 * 30.07=617.587 \mathrm{KN}$

$\mathrm{P}_{\mathrm{c} 19}=372.64+430.1+617.587+520=1940.327=1941 \mathrm{kN}$

| | Job
 Existing Checking | Job no. |
| :---: | :--- | :--- | :--- |
| Section: C20 Axial force-1 | By: | Sheet no. |
| Subject: COLUMN | Date: May 11 | |

R/F Existing Building:

Density of concrete:24.5 KN/m Thickness of Slab max. to be 150 mm .
Affected Area: $(1.2+4.0 / 2) *(6.2 / 2+6.2 / 2)=19.84 \mathrm{~m}^{2}$
Reinforcement: 8 T25
SDL: 3.0 KPa(Finishing) + 0.5 (Service) = 3.5 KPa (Assume, No Record)
LL: 2 KPa (Assume, Dormitory, No record)
DL:
Beam:
20b: $24.5 * 0.3 * 0.575 * 6.2 / 2$ (length of beam) $=13.1 \mathrm{KN}$
20c: $24.5 * 0.3 * 0.575 * 6.2 / 2$ (length of beam) $=13.1 \mathrm{KN}$
c19: $24.5 * 0.45 * 0.75 * 4 / 2$ (length of beam) $=16.54 \mathrm{KN}$
Column: $24.5 * 0.45 * 0.45 * 3.45 \mathrm{~m}$ (Height of Column) $=17.12 \mathrm{KN}$
C20 R/F Axial force $=(3.7+3.5) * 19.84+13.1+13.1+16.54+17.12+2 * 19.84=242.39 \mathrm{KN}$

Add water tank load:

MB1: UC $356 x 406 x 287 \mathrm{~kg} / \mathrm{m} ; \mathrm{s} / \mathrm{w}=287 * 9.8 / 1000=2.9 \mathrm{kN} / \mathrm{m}$ MB2: UC $305 \mathrm{x} 305 \mathrm{x} 158 \mathrm{~kg} / \mathrm{m}$; s/w=158 * 9.8/1000=1.6 kN/m Beam force:

```
MB1= 4/2 * 2.9= 5.8 KN;
```

MB2= $6.2 * 1.6=10 \mathrm{KN}$;

Slab: DD=2Kpa; DL=20Кpa;

$$
\mathrm{A}_{\mathrm{slab}}=6.2 * 4 / 2=12.4 \mathrm{~m}^{2} \text {; }
$$

$\mathrm{A}_{\operatorname{tank}}=4 * 4 / 2=8 \mathrm{~m}^{2}$;
$\mathrm{s} / \mathrm{w}=2 * 12.4+20 * 8=184.8 \mathrm{KN}$
All New Axial Force $=184.8+5.8+10=200.6 \mathrm{KN}=201 \mathrm{KN}$.

	Job Existing Checking	Job no.
Section: C20 Axial force-2	By:	Sheet no.
Subject: COLUMN	Date: May 11	

UD/F Existing Building:

Density of concrete:24.5 KN/m Thickness of Slab max. to be 175 mm .
Affected Area: $4.0 / 2 *(6.2 / 2+6.2 / 2)=12.4 \mathrm{~m}^{2}$
Reinforcement: 8T25
SDL: 1.5 KPa (Finishing) +0.5 (Service) $=2 \mathrm{KPa}$ (Assume, No record)
LL: 5 KPa (Assume, Dormitory, No record)
DL:
Slab: $24.5 * 0.175(\mathrm{t})=4.3 \mathrm{KPa}$
Beam:
$20 \mathrm{~b}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.6 * 6.2 / 2($ length of beam $)=13.67 \mathrm{KN}$
$20 \mathrm{c}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.6 * 6.2 / 2$ (length of beam) $=13.67 \mathrm{KN}$
c19: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.625 * 4 / 2$ (length of beam) $=13.78 \mathrm{KN}$
Column: s/w=24.5*0.45*0.45*3.3m(Height of Column) $=16.37 \mathrm{KN}$
$\mathrm{C} 20 \mathrm{UD} / \mathrm{F}$ Axial force $=(4.3+2) * 12.4+13.67+13.67+13.78+16.37+5 * 12.4=197.61 \mathrm{KN}$

MD/F Existing Building:

Density of concrete:24.5 KN/m Thickness of Slab max. to be 200 mm .
Affected Area: $(4.0 / 2+1.2) *(6.2 / 2+6.2 / 2)=19.84 \mathrm{~m}^{2}$
Reinforcement: 8 T25
SDL: 1.5 KPa (Finishing) +0.5 (Service) $=2 \mathrm{KPa}$ (Assume, No record)
LL: 5 KPa (Assume, Dormitory, No record)
DL:
Slab: $24.5 * 0.2(\mathrm{t})=4.9$ Кра
Beam:
20b: $24.5 * 0.45 * 0.75 * 6.2 / 2$ (length of beam) $=25.63 \mathrm{KN}$
20 c: $24.5 * 0.45 * 0.75 * 6.2 / 2$ (length of beam) $=25.63 \mathrm{KN}$
c19: $24.5 * 0.45 * 0.775 * 4 / 2($ length of beam $)=17.09 \mathrm{KN}$

Pile cap: s/w=24.5 x $(3 * 1.4 * 3.375 \mathrm{~m}$ (Height of Column) $+0.525 *(1.15+1) * 0.615)=364.3 \mathrm{KN}$
C20 MD/F Axial force $=(4.9+2) * 19.84+25.63+25.63+17.09+364.3+5 * 19.84=668.75 \mathrm{KN}$

$P_{c 20}=242.39+197.61+668.75+201=1309.75=1310 \mathrm{kN}$

	Job		Existing Checking

R/F Existing Building:

Density of concrete: $24.5 \mathrm{KN} / \mathrm{m}^{3}$ Thickness of Slab max. to be 150 mm .
Affected Area: $(5.7 / 2+5.7 / 2) *(3.5+6.2 / 2)=37.62 \mathrm{~m}^{2}$
Reinforcement: 8T25
SDL: 3.0 KPa(Finishing) + 0.5 (Service) $=3.5 \mathrm{KPa}$ (Assume, No Record)
LL: 2 KPa (Assume, Dormitory, No record)
DL:
Slab: $s / w=24.5 * 0.15(t)=3.7 \mathrm{KPa}$
Beam:
$17 \mathrm{c}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 / 2$ (1ength of beam) $=13.1 \mathrm{KN}$
$17 \mathrm{~d}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 2.5$ (length of beam) $=10.57 \mathrm{KN}$
$\mathrm{d} 15: \mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.6 * 5.7 / 2($ length of beam $)=18.85 \mathrm{KN}$
d17: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.6 * 5.7 / 2($ length of beam $)=18.85 \mathrm{KN}$
$16 \mathrm{c}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 /(2 * 2)($ length of beam $)=6.55 \mathrm{KN}$
18c: $\mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 /(2 * 2)($ length of beam $)=6.55 \mathrm{KN}$
e15: $\mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.45 * 5.7 / 2$ (length of beam) $=9.43 \mathrm{KN}$
e17: $\mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.45 * 5.7 / 2($ length of beam $)=9.43 \mathrm{KN}$
Column: s/w= $24.5 * 3.14 * 0.25 * 0.25 * 3.45 \mathrm{~m}$ (Height of Column) $=16.59 \mathrm{KN}$
D17 R/F Axial force $=(3.7+3.5) * 37.62+13.1+10.57+18.85 * 2+6.55 * 2+9.43 * 2+16.59+2 * 37.62$
$=456.02 \mathrm{KN}$

Add water tank 10

MB1: UC $356 \times 406 \times 287 \mathrm{~kg} / \mathrm{m}$; $\mathrm{s} / \mathrm{w}=287 * 9.8 / 1000=2.9 \mathrm{kN} / \mathrm{m}$
MB2: UC $305 \times 305 \times 158 \mathrm{~kg} / \mathrm{m}$; s/w=158 * 9.8/1000 $=1.6 \mathrm{kN} / \mathrm{m}$
Beam force:

$$
\text { MB1: } 5.7 / 2 * 2.9=8.265 \mathrm{KN} \text {; }
$$

MB2: $6.2 / 2 * 1.6=5 \mathrm{KN}$;
Slab: DD=2Kpa; DL=20Kpa;

$$
\mathrm{A}_{\mathrm{slab}}=6.2 / 2 * 5.7 / 2=8.84 \mathrm{~m}^{2}
$$

$A_{\text {tank }}=4 / 2 * 3 / 2=3 \mathrm{~m}^{2}$;
$\mathrm{s} / \mathrm{w}=2 * 8.84+20 * 3=77.68 \mathrm{KN}$
A11 New Axial Force $=77.68+8.265+5=90.945 \mathrm{KN}=91 \mathrm{KN}$.

ROOF PLAN

	Job Existing Checking	Job no.
Section:	D19 Axial force-1	By:
Subject:	COLUMN	Date: May 11

R/F Existing Building:

Density of concrete:24.5 KN/m Thickness of Slab max. to be 150 mm .
Affected Area: $(5.7 / 2+4.0 / 2) *(3.5+6.2 / 2)=32.01 \mathrm{~m}^{2}$
Reinforcement: 8 T25
SDL: 3.0 KPa(Finishing) +0.5 (Service) $=3.5 \mathrm{KPa}$ (Assume, No Record)
LL: 2 KPa (Assume, Dormitory, No record)
DL:
Slab: $\mathrm{s} / \mathrm{w}=24.5 * 0.15(\mathrm{t})=3.7 \mathrm{KPa}$
Beam:
19c: $s / w=24.5 * 0.3 * 0.575 * 6.2 / 2($ length of beam) $=13.1 \mathrm{KN}$
$19 \mathrm{~d}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 2.5$ (length of beam) $=10.57 \mathrm{KN}$
d17: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.75 * 5.7 / 2$ (length of beam) $=18.85 \mathrm{KN}$
d19: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.75 * 4 / 2$ (length of beam) $=18.85 \mathrm{KN}$
$18 \mathrm{c}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 /(2 * 2)$ (length of beam) $=6.55 \mathrm{KN}$
e17: $\mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.45 * 5.7 / 2$ (length of beam) $=9.43 \mathrm{KN}$
e19: $\mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.45 * 4 / 2($ length of beam $)=6.62 \mathrm{KN}$
Column: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.45 * 3.45 \mathrm{~m}$ (Height of Column) $=17.12 \mathrm{KN}$
D19 R/F Axial force $=(3.7+3.5) * 32.01+13.1+10.57+18.85+18.85+6.55+9.43+6.62+17.12$
$+2 * 32.01=395.58 \mathrm{KN}$

Add water tank load:

MB1: UC $356 \times 406 \times 287 \mathrm{~kg} / \mathrm{m}$; s/w=287 * 9.8/1000=2.9 kN/m MB2: UC $305 \times 305 \times 158 \mathrm{~kg} / \mathrm{m}$; $\mathrm{s} / \mathrm{w}=158 * 9.8 / 1000=1.6 \mathrm{kN} / \mathrm{m}$ Beam force:
MB1: $\mathrm{s} / \mathrm{w}=(5.7+4) / 2 * 2.9=14.1 \mathrm{KN}$;
MB2: $\mathrm{s} / \mathrm{w}=2 * 6.2 / 2 * 1.6=10.0 \mathrm{KN}$;
Slab: DD=2Kpa; DL=20Кра;
$A_{\text {slab }}=6.2 / 2 *(5.7 / 2+4 / 2)=15 \mathrm{~m}^{2}$;
$A_{\text {tank }}=4 / 2 *(5.7 / 2+4 / 2)=9.7 \mathrm{~m}^{2}$;
$\mathrm{s} / \mathrm{w}=2 * 15+20 * 9.7=224 \mathrm{KN}$
All New Axial Force $=224+14.1+10.0=248.1 \mathrm{KN}=249 \mathrm{KN}$.

	Job Existing Checking	Job no.	
Section:	D20 Axial force -1	By:	Sheet no.
Subject:	R/F	Date: May 11	

R/F Existing Building:

Density of concrete:24.5 KN/m Thickness of Slab max. to be 150 mm .
Affected Area: $(1.2+4.0 / 2) *(3.5+6.2 / 2)=21.12 \mathrm{~m}^{2}$
Reinforcement: 8 T25
SDL: 3.0 KPa (Finishing) +0.5 (Service) $=3.5 \mathrm{KPa}$ (Assume, No Record)
LL: 2 KPa (Assume, Dormitory, No record)
DL:
Slab: $s / w=24.5 * 0.15(t)=3.7 \mathrm{KPa}$
Beam:
$20 \mathrm{c}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 6.2 / 2$ (length of beam) $=13.1 \mathrm{KN}$
$20 \mathrm{~d}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.575 * 2.5$ (length of beam) $=10.57 \mathrm{KN}$
d19: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.6 * 4 / 2$ (length of beam) $=13.23 \mathrm{KN}$
e19: $s / w=24.5 * 0.3 * 0.45 * 4 / 2$ (length of beam) $=6.62 \mathrm{KN}$
Column: s/w= 24.5 * 0. $45 * 0.45 * 3.45 \mathrm{~m}($ Height of Column) $=17.12 \mathrm{KN}$
D20 R/F Axial force $=(3.7+3.5) * 21.12+13.1+10.57+13.23+6.62+17.12+2 * 21.12=254.94 \mathrm{KN}$

Add water tank load:

MB1: UC $356 x 406 x 287 \mathrm{~kg} / \mathrm{m} ; \mathrm{s} / \mathrm{w}=287 * 9.8 / 1000=2.9 \mathrm{kN} / \mathrm{m}$ MB2: UC $305 x 305 \times 158 \mathrm{~kg} / \mathrm{m}$; s/w=158 * 9.8/1000=1.6 kN/m Beam force:

MB1: $\mathrm{s} / \mathrm{w}=4 / 2 * 2.9=5.8 \mathrm{KN}$;
MB2: $s / w=6.2 / 2 * 1.6=5.0 \mathrm{KN}$;
Slab: DD=2Kра; DL=20Kра;
$\mathrm{A}_{\mathrm{slab}}=6.2 / 2 * 4 / 2=6.2 \mathrm{~m}^{2}$
$\mathrm{A}_{\text {tank }}=4 / 2 * 4 / 2=4 \mathrm{~m}^{2}$
$\mathrm{s} / \mathrm{w}=2 * 6.2+30 * 4=132.4 \mathrm{KN}$
All New Axial Force $=132.4+5.8+5=143.2 \mathrm{KN}=144 \mathrm{KN}$.

| | Job
 Existing Checking | Job no. |
| :--- | :--- | :--- | :--- |
| Section: D20 | By: | Sheet no. |
| Subject: UD/F | Date: May 11 | |

UD/F Existing Building:

Density of concrete:24.5 KN/m Thickness of Slab max. to be 175 mm .
Affected Area: $4.0 / 2 *(2.5+6.2 / 2)=11.2 \mathrm{~m}^{2}$
Reinforcement: 8T25
SDL: 1.5 KPa (Finishing) +0.5 (Service) $=2 \mathrm{KPa}$ (Assume, No record)
LL: 5 KPa (Assume, Dormitory, No record)
DL:
Slab: $24.5 * 0.175(\mathrm{t})=4.3 \mathrm{KPa}$
Beam:
$20 \mathrm{c}: ~ \mathrm{~s} / \mathrm{w}=24.5 * 0.3 * 0.6 * 6.2 / 2$ (length of beam) $=13.67 \mathrm{KN}$
$20 \mathrm{~d}: \mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.6 * 2.5$ (length of beam) $=11.03 \mathrm{KN}$
d19: $\mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.625 * 4 / 2$ (length of beam) $=13.78 \mathrm{KN}$
e19: $\mathrm{s} / \mathrm{w}=24.5 * 0.3 * 0.55 * 4 / 2$ (length of beam) $=8.09 \mathrm{KN}$
Column: s/w $=24.5 * 0.45 * 0.45 * 3.3 \mathrm{~m}$ (Height of Column) $=16.37 \mathrm{KN}$
D20 UD/F Axial force $=(4.3+2) * 11.2+13.67+11.03+13.78+8.09+16.37+5 * 11.2=188.38 \mathrm{KN}$

MD/F Existing Building:

Density of concrete:24.5 KN/m Thickness of Slab max. to be 200 mm .
Affected Area: $(4.0 / 2+1.2) *(2.5+6.2 / 2)=17.92 \mathrm{~m}^{2}$
Reinforcement: 8 T25
SDL: 1.5 KPa (Finishing) +0.5 (Service) $=2 \mathrm{KPa}$ (Assume, No record)
LL: 5 KPa (Assume, Dormitory, No record)
DL:
Slab: $24.5 * 0.2(\mathrm{t})=4.9$ Кра
Beam:
$20 \mathrm{c}: \mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.75 * 6.2 / 2$ (length of beam) $=25.63 \mathrm{KN}$
$20 \mathrm{~d}: \mathrm{s} / \mathrm{w}=24.5 * 0.45 * 0.75 * 2.5$ (length of beam) $=20.67 \mathrm{KN}$
d19: $s / w=24.5 * 0.45 * 0.775 * 4 / 2($ length of beam $)=17.09 \mathrm{KN}$
e19: $s / w=24.5 * 0.35 * 0.5 * 4 / 2($ length of beam $)=8.58 \mathrm{KN}$
Pile cap: $s / w=24.5 * 1.3 * 1.4 * 1.65 \mathrm{~m}$ (Height of Column) $=73.57 \mathrm{KN}$

sentor $0 . \frac{8}{4}$
$\mathrm{D} 20 \mathrm{MD} / \mathrm{F}$ Axial force $=(4.9+2) * 17.92+25.63+20.67+17.09+8.58+73.57+5 * 17.92=358.78 \mathrm{KN}$
D20 MD/F Axial force $=(4.9+2) * 17.92+25.63+20.67+17.09+8.58+73.57+5 * 17.92=358.78 \mathrm{KN}$

$\mathrm{P}_{\mathrm{D} 20}=254.94+188.38+358.78+144=946.1=947 \mathrm{kN}$

Summary of calculation results of bearing capacity of existing columns

Column Mark	Total load on each layer			Existing (kN)	New (kN)	New Total force (kN)	Capacity of (kN)	Whether the bearing capacity can meet the requirements	Safetyfactor$\begin{gathered} =(\text { capacity } / \text { New } \\ \text { Total force) } \end{gathered}$
	$\begin{aligned} & R / F \\ & (\mathrm{kN}) \end{aligned}$	UD/F (kN)	MD/F (kN)						
B17	353.65	412.99	456.84	1223.48	91.00	1314.48	3387.00	1314.48 < 3387 OK	2.58
B19	301.87	355.14	387.44	1044.45	249.00	1293.45	3300.00	$1293.45<3300$ OK	2.55
B20	200.36	165.83	242.90	609.09	144.00	753.09	3387.00	753.09 < 3387 OK	4.50
C17	441.79	508.55	571.79	1522.13	174.00	1696.13	3300.00	1696.13 < 3300 OK	1.95
C19	372.64	430.10	476.17	1278.91	520.00	1798.91	3300.00	$1798.91<3300$ OK	1.83
C20	242.39	197.61	304.45	744.45	201.00	945.45	3387.00	945.45 < 3387 OK	3.58
D17	456.02	475.69	488.61	1420.31	91.00	1511.31	3300.00	$1511.31<3300$ OK	2.18
D19	395.58	410.81	444.56	1250.95	249.00	1499.95	3387.00	$1499.95<3387$ OK	2.26
D20	254.94	188.38	285.21	728.53	144.00	872.53	3387.00	$872.53<3387$ OK	3.88

Note:Capacity of Column $=0.35$ • Fcu • Ac + 0.67 • Fy • As
(Size: d500mm)
$\mathrm{N}=0.35$ - Fcu • Ac + 0.67 • Fy • As
Fcu $=40 \mathrm{~N} / \mathrm{mm}^{2}$
Ac $=3.14 \times 250 \times 250=196250 \mathrm{~mm}^{2}$
Fy $=210 \mathrm{~N} / \mathrm{mm}^{2} \quad$ (highyield steel)
As $(8 T 25)=8 \times 490.9=3927.2 \mathrm{~mm}^{2}$
$\mathrm{N}=0.35 \times 40 \times 196250+0.67 \times 210 \times 3927.2$ $=3300057.04 \mathrm{~N}=3300 \mathrm{KN}$
(Size: 450x450mm)

```
N = 0.35 • Fcu • Ac + 0.67 • Fy • As
Fcu = 40 N/mm
Ac = 450 x 450 = 202500 mm
Fy = 210 N/mm2 ( highyield steel )
As (8T25)= 8 x 490.9 = 3927.2 mm
N = 0.35 x 40 x 202500 + 0.67 x 210 x 3927.2
                                    = 3387557.04 N = 3387 KN
```


Summary of checking results of bearing capacity of pile foundation

Pile									
Mark	Weight of CAP (kN)	Total upper (kN)	Total axial force (kN)	Number of piles (bar)	Single pile axial force	Capacity of Single Piles $(k N)$	Whether the bearing capacity can meet the requirements	safety factor=(capacity/ Single pile axial force)	
B17	152.30	1314.48	1467.00	2	733.5	1100.00	$733.5<1100$	OK	1.50
B19	141.41	1293.45	1435.00	2	717.5	1100.00	$717.5<1100$ OK	1.53	
B20	200.57	753.09	954.00	1	954	1100.00	$954<1100$	OK	1.15
C17	153.20	1696.13	1850.00	2	925	1100.00	$925<1100$	OK	1.19
C19	141.41	1798.91	1941.00	2	970.5	1100.00	$970.5<1100$	OK	1.13
C20	364.30	945.45	1310.00	2	655	1100.00	$655<1100$	OK	1.68
D17	121.28	1511.31	1633.00	2	816.5	1100.00	$816.5<1100$	OK	1.35
D19	121.28	1499.95	1622.00	2	811	1100.00	$811<1100$	OK	1.36
D20	73.57	872.53	947.00	1	947	1100.00	$947<1100$	OK	1.16

Note:The bearing capacity of single pile is 110 t (use1100kN)
(Among them, B20 and D20 are single piles, and the rest are double piles)

conclusion

Through the above calculation, the bearing capacity of all structural members meet the requirements of the transformation plan, and the checking calculation is passed

Appendix C

Drawings

Summary of calculation results of bearing capacity of existing columns

Column Mark	Total load on each layer			Existing (kN)	New (kN)	New Total force (kN)	Capacity of (kN)	Whether the bearing capacity can meet the requirements	Safetyfactor$\begin{gathered} =(\text { capacity/New } \\ \text { Total force) } \end{gathered}$
	$\begin{aligned} & R / F \\ & (\mathrm{kN}) \end{aligned}$	$\begin{gathered} \text { UD/F } \\ (k N) \end{gathered}$	MD/F (kN)						
B17	353.65	412.99	456.84	1223.48	91.00	1314.48	3387.00	$1314.48<3387$ OK	2.58
B19	301.87	355.14	387.44	1044.45	249.00	1293.45	3300.00	$1293.45<3300$ OK	2.55
B20	200.36	165.83	242.90	609.09	144.00	753.09	3387.00	753.09 < 3387 OK	4.50
C17	441.79	508.55	571.79	1522.13	174.00	1696.13	3300.00	1696.13 < 3300 OK	1.95
C19	372.64	430.10	476.17	1278.91	520.00	1798.91	3300.00	$1798.91<3300$ OK	1.83
C20	242.39	197.61	304.45	744.45	201.00	945.45	3387.00	945.45 < 3387 OK	3.58
D17	456.02	475.69	488.61	1420.31	91.00	1511.31	3300.00	$1511.31<3300$ OK	2.18
D19	395.58	410.81	444.56	1250.95	249.00	1499.95	3387.00	$1499.95<3387$ OK	2.26
D20	254.94	188.38	285.21	728.53	144.00	872.53	3387.00	872.53 < 3387 OK	3.88

Note:Capacity of Column = 0.35 • Fcu • Ac + 0.67 • Fy • As
(Size: d500mm)
$\mathrm{N}=0.35$ • $\mathrm{Fcu} \cdot \mathrm{Ac}+0.67$ • Fy • As
$\mathrm{Fcu}=40 \mathrm{~N} / \mathrm{mm}^{2}$
Ac $=3.14 \times 250 \times 250=196250 \mathrm{~mm}^{2}$
Fy $=210 \mathrm{~N} / \mathrm{mm}^{2}$ (highyield steel)
As $(8 T 25)=8 \mathrm{x} 490.9=3927.2 \mathrm{~mm}^{2}$
$\mathrm{N}=0.35 \times 40 \times 196250+0.67 \times 210 \times 3927.2$ $=3300057.04 \mathrm{~N}=3300 \mathrm{KN}$
(Size: 450x450mm)

```
N = 0.35 • Fcu • Ac + 0.67 • Fy • As
Fcu = 40 N/mm
Ac = 450 x 450 = 202500 mm
Fy = 210 N/mm2 ( highyield steel )
As (8T25) = 8 x 490.9 = 3927.2 mm
N}=0.35\times40\times202500+0.67\times210\times3927.
    = 3387557.04 N = 3387 KN
```


Summary of checking results of bearing capacity of pile foundation

Pile									
Mark	Weight of CAP (kN)	Total upper (kN)	Total axial force (kN)	Number of piles (bar)	Single pile axial force	Capacity of Single Piles $(k N)$	Whether the bearing capacity can meet the requirements	safety factor=(capacity/ Single pile axial force)	
B17	152.30	1314.48	1467.00	2	733.5	1100.00	$733.5<1100$	OK	1.50
B19	141.41	1293.45	1435.00	2	717.5	1100.00	$717.5<1100$	OK	1.53
B20	200.57	753.09	954.00	1	954	1100.00	$954<1100$	OK	1.15
C17	153.20	1696.13	1850.00	2	925	1100.00	$925<1100$	OK	1.19
C19	141.41	1798.91	1941.00	2	970.5	1100.00	$970.5<1100$	OK	1.13
C20	364.30	945.45	1310.00	2	655	1100.00	$655<1100$	OK	1.68
D17	121.28	1511.31	1633.00	2	816.5	1100.00	$816.5<1100$	OK	1.35
D19	121.28	1499.95	1622.00	2	811	1100.00	$811<1100$	OK	1.36
D20	73.57	872.53	947.00	1	947	1100.00	$947<1100$	OK	1.16

Note:The bearing capacity of single pile is 110 t (use1100kN)
(Among them, B20 and D20 are single piles, and the rest are double piles)

Conclusion

Through the above calculation, the bearing capacity of all structural members meet the requirements of the transformation plan, and the checking calculation is passed

Appendix C

Drawings

GENERAL NOTE

A. GENERAL NOTE
. all existng structure dimensions should be

REEERED To THE PRINCIPAL DATUM(mPD).
2. ALL LEVELS SHOWN IN DRAWNGS ARE INDICATVE
3. HI MAL BE VERILO ON SIE
3. THIS DRAWING SHALL RE READ IN CONUNCTION
4. NEW STRUCTURAL STEELWORK AND EXISTING

A/ C.OP. FOR THE STRUCTURAL USE OF STEEL 2011 (2023 EDITIoN)
B/ BULLDNG (CONSTRUCTON) REGULATIO
COP
E/ C.O.P. FOR FIRE SAFETY IN BUILINGS 2011
B. DESIGN LOADING

2. DESIGN WIND PRESSURE QZ=1.768kPo (HEICHT $=13.65 \mathrm{~m}$) WTH WND PRESSURE

COEFFICENT Cp=2.0, SHAPE FACTOR Ss=1.024, SOLDITY RATO $=1.0$
3. LIVE LOAD AT R/F $=0.75 \mathrm{KPP}$ (MAINTENANCE PLATFORM), AT $6 / F \& 1 / F(F O R M E R ~ M D / F \& U D / F)=5 k P a(E X H B I T I O N)$
C. STRUCTURAL STEEL

1. AlL STRUCTURAL STEEL SECTIONS To be grade s355
(CLASS 1) TO BS EN 10025-1:2004 OR BS EN 10210-1:2006
WTH MNIMM DESIGN STRENG OF 355 WMP RESECTVELY.
2. ALL STEEL TO BE HOT DIP GALVANEED (MIN. B5um) COMPLILD

GALVANIZED COATINGS DAMAGED BY WELOING OR CUTTING SHALL BE MAQ
G000 WTH THE USE OF MNIMUM TWO COATS OF ZICC RICH TO BS 4652:1995.
3. ALL WELDNG TO BE ELECTRODE GRADE 35 WTH STRENGTH OF 250MPd
COMPLY TO BS EN ISO 2560: 2009 AND BE EN ISO 15614 UNLESS COMPLY TO BS EN
OTHERWSE STATED.
4. only certifed welders shall be employed in welong of
 RSE BEFORE COMMENCEMENT OF WORKS.
5. CHIP OFF THE PLASTER FROM THE FACE OF EXISTING R.C. MEMBERS
TO BE IN CONTACT WTH NEW STEEL MEMEERS BEFORE INSTALATIO

MEMBER SCHEDULE

MARK	SECTION	GRADE
MB1	$356 \times 406 \times 287 \mathrm{~kg} / \mathrm{m}$ UC	S355
MB2	$305 \times 305 \times 158 \mathrm{~kg} / \mathrm{m}$ UC	S355
EM1	20 mm THK. GMS PLATE	S355
S1	$260 \times 100 \times 15 \mathrm{~mm}$ THK. BUILT UP ANGLE	S355
-	15 mm THK. GMS PLATE	S355

D. EXISTING STRUCTURE INFORMATION

1. ALL CONCRETE TO STRUCTURES TO BE OF GRADE 40/20.
2. ALL RENFORCEMENT TO COMPLY WITH BS 4449
3. MINIMUM ANCHORAGE LENGTH FOR REINFORCEMENT OF HIGH YELD TYPE 2 DEFORMED bARS TO BE 32 TMMES THE DAMETER OF BAR UNLESS OTHERWSE SPECIFED.
4. PEREMSSBIE DECK LEVEL $=8.0 \mathrm{kPo}$

E. ANCHOR BOLTS

. WHere specified, carry out loading test of anchor bolts in accordance with bs 5080and bs 5080-2 at a sampling rate of at least 1% of the anchor bolts or 5 Numbers, whichever IS MORE, OF EACH TYPE AND SIZE OF THE BOLTS INSTALIED
2. EACH SAMPLE BOLT SHALL BE TESTED FOR TENSLLE LOAD BY PuLL-OUT TEST AND/OR SHEAR LOAD BY Shear load test, as approprate, to not less than 1.5 Thers the recommended working load OF THE BOLTS AND WTH A MNMMUM HOLDING TME OF 60 MNS UNDER MAXIMUM TEST LOAD.
3. the sample bolt shall not show any signs of separation, plastic deformation or deleterious EFFECT, AND SHALL HAVE AT LEAST 80% RECOVERY OF THE TOTAL DEFORMATION UPON REMOVAL OF THE TEST LOAD
4. AN ACCREDITED LAbORATORY SHALL be Employed to carry out the testing of anchor bolts, AND PROVIDE ANY NECESSARY LABOUR AND ATTENDANCE.

| |
| :--- | :--- |

TYPY 1：CONNECTION DETAIL BETWEEN MB2 \＆MB1

TYPY 2 ：CONNECTION DETAIL BETWEEN MB2 \＆MB1

TYPICAL CONNECTION DETAIL BETWEEN MB1 \＆EX．COLUMN

SEC．1－1 1：10
（SEC 2－2 SIMLAR）

TYPICAL DETAIL OF S1

CONCRETE EXISTING MEMBER	

－ALL DIMENSIONS ARE IN MLLIMETRES UNLESS OTHERWISE NOTED
除特別注明外，所有尺寸是以晕米制
除特別注明外，所有尺寸是以毫米制
DO NOT SCALE DRAWING
圖中以所有桠洔尺寸為隹
圆中以所有标注尺寸為准，不鹰量度
－ALL MEASREMENEN ON STE
－ALL MEASUREMENTS SHO
最終尺寸須在現場䞄對確
 WHOSE CONSENT MUST BE OBTANED BEFORE ANY USE OR REPRODUCTION OF THE DRAWING OR

Appendix D
 Record Plan

 3. FENDERMG SSTTEM NOT SHown. 4. ALL RC PARAPET WALL TO BE 15 DATE OF COMMENCEMENT: 7/4/8 PIER-

 Till
 3.LVE LCAAD ON MAIN DECK $=8$ KNTM ${ }^{2}$

PIER B -
GENERAL LAYOUT
(SHEET 1 OF 2)

Praming no.	
P16031C	$1: 200$

Ottice
PORT WORKS DIVISION
cIVIL ENGINEERING OFFICE

- $5 \begin{aligned} & \text { civil enginebring } \\ & \text { services department } \\ & \text { hong kong }\end{aligned}$

COPYRIGHT RESERVED

- hona kong

ROOF PLAN

1. ALL DIMENSIONS IN MLLIMETRES. 2. AL LEVELS TO BE STRUCURAL LVVEL 3. For rec iotal of dumy beans

UPPER DECK PLAN

$-600 \times 600 \times 550$ DEEP DRAW PIT

(B2)

$600 \times 600 \times 450$ DEEP व
900×500 DUUMY BEAM
300×400 dumar beam

PRECAST TIE BEAMS PLAN

all omensions an mlimetres.

 ALL PlIES ARE 700 mm EXTERNaL

MMMUM Concerete cover to ple At
PLLE CAP TO BE 100 mm .
6. For detals of stel tuguar plles

Notes ALIMENSIONS in MiLLImetres.

5. For general notes refer to

SECTION AMA

SECTION B-B

SECTION C-C

SECTION DAD

SECTION ERE

重要

操作人员在使用本产品前，请务必仔细查阅产品说明书，以确保操作安全。

IMPORTANT
Please ensure that these instructions are read and understood by machine operators before using the product

请详阅手册内容并善加保存 Please read and save this mamual

使用说明书 Use Specification

GDL型立式多级离心泉

上海超盾机械制造集团有眼司

CDUN

上海超盾机械制造集团有限公司（原自高泵沎）公司始建于1992年，生产历史悠久，由于公司发展的需求于 2019 年组建成集团，现位于上海浦东新区惠南镇双店路 518 号，总部占地面积 6000 平方米，建筑面积 4000 平方米，现有职工 120 人，工程技术人员 20 人，是一家专业生产泵类产品的公司，主要产品有单级泉系列，多级泵系列，排污泉系列，消防泉系列，化工泵系列，成套供水设备系列，水泵专用电气控制柜，变频控制柜等。

公司拥有国家B级水泵测试台，设有计算机控制中心，CAD／CAM计算机辅助设计和加工软件，有效地保证产品开发设计，生产制造，质量控制等工作的顺利进行。公司通过了ISO9001：2015质量管理体系认证，质量符合国家标准。产品广泛适用于石油，化工，治金，电力，建筑，环保，制药，城市建设，污水处理，消防设施，集中采暖，农业排灌等领域，部分产品被南水北调，西气东输等国家重点工程和武汉钢铁集团，中国石化等大型企业所采用。

公司以市场为核心，靠质量万里行，在全国各大中型城市设有 40 多家销售服务公司或分支机构形成了一个系统性的销售服务网络，完全彻底的免除了用户的一切后顾之忧，使公司的产品一步步向新市场拓展，公司追求＂精心，尽心，诚信，创新＂的精神，本着＂为客户创造价值，为员工创造机会，为社会创造效益＂的宗旨，以建一流企业，创行业名牌，成为国内领先的泉类产品及供水解决方案的集成供应服务商为目标，超盾人真诚的与各界朋友开展广泛的合作，共同创造一个美好的未来。

Shanghai CHAODUN machinery group co．，LTD．（Formerly ZIGAO Pump\＆valve）which was founded in 1992，has a long history．The company form a group in 2019 due to the demand for the development of the company，it located in No．518，Shuangdian road Huina town Shanghai Pudong new area．The headquarters covers an area of 6000 square meters，the building area is 4000 square meters，existing staff 120 people， 20 people engineers and technicians．CHAODUN is a professional production of pump products company，the main products include single－stage pump series， multistage pump series，sewage pump series，fire pump series，chemical pump series，complete water supply equipment series，special electrical control cabinet for water pump，frequency control cabinet and so on．

CHAODUN has the national B class water pump test bench，the computer control center， CAD／CAM computer aided design and processing software，It ensure product development and design，manufacturing，quality control work smoothly and effectively．CHAODUN has passed iso $9001: 2015$ quality management system certificate，and the quality meets the national standards． The products are widely used in petroleum，chemical industry，metallurgy，electric power， construction，environmental protection，pharmaceutical，urban construction，sewage treatment，fire protection facilities，centralized heating，agricultural irrigation and drainage and other fields．Some products are used by national key projects such as south－to－north water diversion project，west－to－ east gas transmission project and large enterprises such as Wuhan iron and steel group and Sinopec．

CHAODUN take the market as the core，rely on quality，has set up more than 40 large and medium－sized cities nationwide sales and service companies or branches which formed a systematic sales service network，ensure that customers have no worries，CHAODUN＇s products will meet the new market development step by step，CHAODUN pursues＂carefully，diligent，integrity，innovation＂ the spirit，the spirit of＂creating value for customers，creating opportunities for employees，create benefit for the society＂the objective，to build first－class enterprise，create industry brand，become a leading domestic pump products and solution of water supply integrated supply services as the goal， Chaodun staff sincerely carry out extensive cooperation with friends from all walks of life to create a better future together．

탄

1．产品概述 1
2，应用范围 1
3，工作条件 1
4，型号意义 1
5，GDL型泵结构简图 1
6，GDL型泉型谱图 2
7，GDL型泵性能参数 2
8，GDL型泉单级曲线图 9
9，GDL型泉外形及安装图 10
10，泉附件及其尺寸 10
11，泵基础图及其联接尺寸 11
12，安装说明 11
13，起动与停车 11
14，泵的维护与保养 12
15，易损件 12
16，故障原因及排除方法 12

产品概述

GDL型多级离心泵是本单位在国内外优秀泵型之基础上结合用户的使用要求，并根据JB／Q6435．92标准设计制造的新一代产品。

该泵采用立式节段式外加不锈钢壳体结构，使得泵的进出口位于同一水平线上且口径相同，能像阀门一样安装于管路之中，它同时集中了多级豖之高压，立式豖之占地面积小及管道泵之安装方便的优点，同时由于采用了优秀的水力模型，所以还具有高效节能，运行平稳等优点，且轴封采用耐磨机械密封，无泄漏使用寿命长。

应用范围

GDL型多级离心泵主要适用于高压运行系统中冷热清水的循环和增压，高层建筑多台泉并联供水，消防，锅炉给水和冷却水系统及各种冲洗液的输送等。

工作涤件

1，本型泵可输送清水或物理化学性质类似于清水的液体；
2．液体温度：$-15^{\circ} \mathrm{C} \sim+80^{\circ} \mathrm{C}$ ；
3，工作压力：最大工作压力 $<2.5 \mathrm{MPa}$ ，即系统压力＝入口压力＋闭阀工作时的压力＜2．5MPa；
4，周围环境的温度应低于 $40^{\circ} \mathrm{C}$ ，相对湿度不超过 95% ；
5，输送含腐蚀性介质及热液体时，请于订货时提出，以便采用特殊材质满足使用要求。

型号意义

GDL型泉结构简图

GDL型泵型谱图

GDL型泵性能参数

型	流嘘		晹程 （m）	效梳 （\％）	转速 （r／min）	功立		必需汽础余 量 （NPSH）r（m）	高度 （mm）	重㗊 （kg）
	$\left(m^{3} / \mathrm{h}\right)$	（L／s）				献功至（kw）	电机玡交（ 600			
25GDL2－12 $\times 3$	$\begin{aligned} & 1.4 \\ & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.56 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 38 \\ & 36 \\ & 33 \end{aligned}$	$\begin{aligned} & 23 \\ & 30 \\ & 32 \end{aligned}$	2900	$\begin{aligned} & 0.63 \\ & 0.65 \\ & 0.67 \end{aligned}$	1.1	1.4 1.7 1.8	606	60
25GDL2－12 $\times 4$	$\begin{aligned} & 1.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.56 \\ & 0.67 \end{aligned}$	$\begin{aligned} & \hline 50 \\ & 48 \\ & 44 \end{aligned}$	$\begin{aligned} & 23 \\ & 30 \\ & 32 \end{aligned}$	2900	$\begin{aligned} & 0.83 \\ & 0.87 \\ & 0.90 \end{aligned}$	1.1	1.4 1.7 1.8	646	64
25GDL2－12 $\times 5$	$\begin{aligned} & 1.4 \\ & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.56 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 63 \\ & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 23 \\ & 30 \\ & 32 \end{aligned}$	2900	$\begin{aligned} & 1.04 \\ & 1.09 \\ & 1.12 \end{aligned}$	1.5	1.4 1.8 1.8	711	73
25GDL2－12 $\times 6$	$\begin{aligned} & 1.4 \\ & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.56 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 76 \\ & 72 \\ & 66 \end{aligned}$	$\begin{aligned} & 23 \\ & 30 \\ & 32 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 1.26 \\ & 1.30 \\ & 1.35 \\ & \hline \end{aligned}$	1.5	1.4 1.7 1.8	751	76
25GDL2－12 $\times 7$	$\begin{aligned} & 1.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.56 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 88 \\ & 84 \\ & 77 \end{aligned}$	$\begin{aligned} & 23 \\ & 30 \\ & 32 \end{aligned}$	2900	$\begin{aligned} & 1.46 \\ & 1.52 \\ & 1.57 \end{aligned}$	2.2	1.4 1.7 1.8	816	83
25GDL2－12 $\times 8$	$\begin{aligned} & 1.4 \\ & { }^{2} 4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.56 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 101 \\ & 96 \\ & 88 \end{aligned}$	$\begin{aligned} & 23 \\ & 30 \\ & 32 \end{aligned}$	2900	$\begin{aligned} & 1.63 \\ & 1.74 \\ & 1.80 \end{aligned}$	2.2	1.4 1.7 1.8 1	856	87
25GDL2－12 $\times 9$	$\begin{aligned} & 1.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.56 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 114 \\ & 108 \\ & 99 \end{aligned}$	$\begin{aligned} & 23 \\ & 30 \\ & 32 \end{aligned}$	2900	$\begin{aligned} & 1.89 \\ & 1.96 \\ & 2.02 \end{aligned}$	2.2	1.4 1.8 1.8 1	896	92
25GDL2－12 $\times 10$	$\begin{aligned} & 1.4 \\ & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.56 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 126 \\ & 120 \\ & 110 \end{aligned}$	$\begin{aligned} & 23 \\ & 30 \\ & 32 \end{aligned}$	2900	$\begin{aligned} & 2.01 \\ & 2.17 \\ & 2.24 \end{aligned}$	3	1.4 1.7 1.8 1	981	105
25GDL2－12 $\times 11$	$\begin{aligned} & 1.4 \\ & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.56 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 139 \\ & 132 \\ & 121 \end{aligned}$	$\begin{aligned} & 23 \\ & 30 \\ & 32 \end{aligned}$	2900	$\begin{aligned} & 2.31 \\ & \begin{array}{l} 2.39 \\ 2.39 \\ 2.47 \end{array} \end{aligned}$	3	1.4 1.7 1.8 1.8	1021	109
25GDL2－12 $\times 12$	$\begin{aligned} & 1.4 \\ & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.56 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 152 \\ & 144 \\ & 132 \end{aligned}$	$\begin{aligned} & 23 \\ & 30 \\ & 32 \end{aligned}$	2900	$\begin{aligned} & 2.52 \\ & 2.61 \\ & 2.70 \\ & \hline 2.70 \end{aligned}$	3	1.4 1.7 1.8 1.8	1061	113
25GDL2－12 $\times 13$	$\begin{aligned} & 1.4 \\ & 1.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.56 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 164 \\ & \begin{array}{l} 56 \\ 156 \end{array} \end{aligned}$	$\begin{aligned} & 23 \\ & 30 \\ & 32 \end{aligned}$	2900	$\begin{aligned} & 2.72 \\ & 2.83 \\ & 2.84 \\ & 2.94 \\ & \hline \end{aligned}$	4	1.4 1.7 1.8	1221	127
25GDL2－12 $\times 14$	$\begin{aligned} & 1.4 \\ & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.56 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 176 \\ & \hline 168 \\ & 166 \end{aligned}$	$\begin{aligned} & 23 \\ & 30 \\ & 32 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 2.92 \\ & 3.05 \\ & 3.17 \\ & \hline \end{aligned}$	4	$\begin{array}{r} 1.4 \\ 1.7 \\ \hline \end{array}$	1261	130
25GDL2－12 $\times 15$	$\begin{array}{r} 1.4 \\ 2.4 \end{array}$	$\begin{aligned} & 0.39 \\ & 0.56 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 188 \\ & 180 \\ & 168 \end{aligned}$	$\begin{aligned} & 23 \\ & 30 \\ & 32 \end{aligned}$	2900	3.12 3.27 3.43	4	1.4 1.7 1.8	1301	135

GDL型立式多级离心厡

GDL型豕性能参数

翟 득	流最		扬程 （m）	效察 （\％）	转速 （r／min）	功交		必需汽繦余 畐 （NPSH）r（m）	高度 （mm）	轎㗼 （kg）
	$\left(\mathrm{m}^{3} / \mathrm{h}\right)$	（L／s）				納功公（kw）	电机功家（tw）			
25GDL4－11 $\times 3$	$\begin{aligned} & 2.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 0.78 \\ & 1.11 \\ & 1.33 \end{aligned}$	$\begin{array}{r} 36 \\ 33 \\ 28.5 \\ \hline \end{array}$	$\begin{aligned} & 32 \\ & 40 \\ & 41 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 0.86 \\ & 0.90 \\ & 0.91 \\ & \hline \end{aligned}$	1.1	$\begin{array}{r} 1.4 \\ 1.7 \\ 1.8 \\ \hline \end{array}$	606	60
25GDL4－11 $\times 4$	$\begin{aligned} & 2.8 \\ & 4.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 0.78 \\ & 1.11 \\ & 1.33 \\ & \hline \end{aligned}$	$\begin{aligned} & 48 \\ & 44 \\ & 38 \\ & \hline \end{aligned}$	$\begin{aligned} & 32 \\ & 40 \\ & 41 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 1.14 \\ & 1.20 \\ & 1.21 \\ & \hline \end{aligned}$	1.5	$\begin{array}{r} 1.4 \\ 1.7 \\ \hline \end{array}$	671	70
25GDL4－11 $\times 5$	$\begin{aligned} & 2.8 \\ & 4.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.78 \\ & 1.71 \\ & 1.33 \\ & \hline \end{aligned}$	$\begin{gathered} 60 \\ 55 \\ 47.5 \\ \hline \end{gathered}$	$\begin{aligned} & 32 \\ & 40 \\ & 41 \\ & \hline \end{aligned}$	2900	$\begin{array}{r} 1.43 \\ 1.50 \\ 1.51 \\ \hline \end{array}$	2.2	$\begin{array}{r} 1.4 \\ 1.7 \\ 1.8 \\ \hline \end{array}$	736	76
25GDL4－11 $\times 6$	$\begin{aligned} & 2.8 \\ & 4.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.78 \\ & 1.11 \\ & 1.33 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 72 \\ & 66 \\ & \hline \end{aligned}$	$\begin{aligned} & 32 \\ & 40 \\ & 41 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 1.72 \\ & 1.80 \\ & 1.82 \\ & \hline \end{aligned}$	2.2	1.4 1.7 1.8 1.8	776	79
25GDL4－11 $\times 7$	$\begin{aligned} & 2.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 0.78 \\ & 1.11 \\ & 1.33 \end{aligned}$	$\begin{gathered} 84 \\ 77 \\ 66.5 \end{gathered}$	$\begin{aligned} & 32 \\ & 40 \\ & 41 \end{aligned}$	2900	$\begin{aligned} & 2.00 \\ & 2.10 \\ & 2.12 \\ & \hline 2 \end{aligned}$	3	$\begin{array}{r}1.4 \\ 1.7 \\ 1.8 \\ \hline\end{array}$	861	91
25GDL4－11 $\times 8$	$\begin{aligned} & 2.8 \\ & 4.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & \hline 0.78 \\ & 1.11 \\ & 1.33 \\ & \hline \end{aligned}$	$\begin{aligned} & 96 \\ & 98 \\ & 76 \end{aligned}$	$\begin{aligned} & 32 \\ & 40 \\ & 41 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 2.29 \\ & 2.40 \\ & 2.42 \\ & \hline \end{aligned}$	3	1.4 1.7 1.8 1	901	95
25GDL4－11 $\times 9$	$\begin{aligned} & 2.8 \\ & 4.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.78 \\ & 1.11 \\ & 1.33 \\ & \hline \end{aligned}$	$\begin{gathered} 108 \\ 99 \\ 85.5 \end{gathered}$	$\begin{aligned} & 32 \\ & 40 \\ & 41 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 2.57 \\ & 2.70 \\ & 2.73 \\ & \hline \end{aligned}$	3	1.4 1.7 1.8	941	100
25GDL4－11 $\times 10$	$\begin{aligned} & 2.8 \\ & 4.8 \\ & 4.8 \end{aligned}$	0.78 1.1 1.33	$\begin{gathered} 120 \\ 110 \\ 95 \end{gathered}$	$\begin{aligned} & 32 \\ & 40 \\ & 41 \end{aligned}$	2900	$\begin{aligned} & 2.86 \\ & 3.00 \\ & 3.03 \\ & \hline \end{aligned}$	4	$\begin{aligned} & 1.4 \\ & 1.7 \\ & 1.8 \end{aligned}$	1011	115
25GDL4－11 $\times 11$	$\begin{aligned} & 2.8 \\ & 4.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 0.78 \\ & 1.11 \\ & 1.33 \end{aligned}$	$\begin{gathered} 132 \\ 121 \\ 104.5 \end{gathered}$	$\begin{aligned} & 32 \\ & 40 \\ & 41 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 3.14 \\ & 3.30 \\ & 3.33 \\ & \hline \end{aligned}$	4	1.4 1.7 1.8	1051	119
25GDL4－11 $\times 12$	$\begin{aligned} & 2.8 \\ & 4.8 \\ & \hline 4 . \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.78 \\ & 1.11 \\ & 1.33 \\ & \hline \end{aligned}$	$\begin{aligned} & 144 \\ & 132 \\ & 114 \\ & \hline \end{aligned}$	$\begin{aligned} & 32 \\ & 40 \\ & 41 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 3.43 \\ & 3.60 \\ & 3.64 \\ & \hline \end{aligned}$	4	1.4 1.7 1.8	1091	123
25GDL4－11× 13	$\begin{aligned} & 2.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & \hline 0.78 \\ & 1.11 \\ & 1.33 \end{aligned}$	$\begin{gathered} 156 \\ 143 \\ 143.5 \\ \hline \end{gathered}$	$\begin{aligned} & 32 \\ & 40 \\ & 41 \end{aligned}$	2900	$\begin{aligned} & 3.72 \\ & 3.90 \\ & 3.94 \end{aligned}$	4	1.4 1.7 1.8	1131	127
25GDL4－11 $\times 14$	$\begin{aligned} & 2.8 \\ & 4.8 \end{aligned}$	0.78 1.11 1.33	$\begin{aligned} & 167 \\ & \begin{array}{l} 54 \\ 154 \end{array} \end{aligned}$	$\begin{aligned} & 32 \\ & 40 \\ & 41 \end{aligned}$	2900	$\begin{aligned} & 3.98 \\ & 4.19 \\ & 4.30 \\ & \hline \end{aligned}$	5.5	1.4 1.7 1.8	1246	147
25GDL4－11×15	$\begin{aligned} & 2.8 \\ & 4.8 \\ & \hline \end{aligned}$	0.78 1.11 1.33	$\begin{aligned} & 178 \\ & 165 \\ & 146 \\ & \hline \end{aligned}$	$\begin{aligned} & 32 \\ & 40 \\ & 41 \\ & \hline \end{aligned}$	2900	4.24 4.49 4.65	5.5	1.4 1.7 1.8	1286	152
40GDL6－12 $\times 3$	$\begin{aligned} & 4.2 \\ & 7.2 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.67 \\ & 2.0 \end{aligned}$	$\begin{gathered} 41 \\ 36 \\ 30.5 \\ \hline \end{gathered}$	$\begin{aligned} & 43 \\ & 52 \\ & 52 \\ & \hline \end{aligned}$	2900	1.09 1.14 1.15	1.5	1.7 1.7 1.8	657	71
40GDL6－12 $\times 4$	$\begin{aligned} & 4.2 \\ & 6.2 \\ & 7.2 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.67 \\ & 2.0 \end{aligned}$	$\begin{gathered} 54 \\ 48 \\ 40.6 \end{gathered}$	$\begin{aligned} & 43 \\ & 52 \\ & 52 \\ & \hline \end{aligned}$	2900	$\begin{array}{r} 1.45 \\ 1.5 \\ 1.53 \\ \hline \end{array}$	2.2	1.4 1.7 1.8	722	80
40GDL6－12 $\times 5$	$\begin{aligned} & 4.2 \\ & 6.6 \\ & 7.2 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.67 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 68 \\ & 60 \\ & 51 \end{aligned}$	$\begin{aligned} & 43 \\ & 52 \\ & 52 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 1.81 \\ & 1.88 \\ & 1.92 \\ & \hline \end{aligned}$	2.2	1.4 1.7 1.8	762	85
40GDL6－12 $\times 6$	$\begin{gathered} 4.2 \\ 6.2 \\ 7.2 \\ \hline \end{gathered}$	$\begin{aligned} & 1.17 \\ & 1.67 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 82 \\ & 72 \\ & 61 \end{aligned}$	$\begin{aligned} & 43 \\ & 52 \\ & 52 \end{aligned}$	2900	$\begin{aligned} & 2.18 \\ & 2.26 \\ & 2.30 \\ & \hline \end{aligned}$	3	$\begin{array}{r} 1.4 \\ 1.7 \\ 1.8 \\ \hline \end{array}$	847	101
40GDL6－12×7	$\begin{aligned} & 4.6 \\ & 7.2 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.67 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 95 \\ & 84 \\ & 71 \\ & \hline \end{aligned}$	$\begin{aligned} & 43 \\ & 52 \\ & 52 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 2.54 \\ & 2.64 \\ & 2.69 \\ & \hline \end{aligned}$	3	1.4 1.7 1.8	887	107
40GDL6－12×8	$\begin{aligned} & 4.2 \\ & 7.2 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.67 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 109 \\ & 96 \\ & 81 \end{aligned}$	$\begin{aligned} & 43 \\ & 52 \\ & 52 \end{aligned}$	2900	$\begin{aligned} & 2.91 \\ & 3.01 \\ & 3.07 \end{aligned}$	4	1.4 1.7 1.8	967	123
40GDL6－12 $\times 9$	$\begin{aligned} & 4.2 \\ & 7.2 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.67 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 123 \\ & 108 \\ & 91 \end{aligned}$	$\begin{aligned} & 43 \\ & 52 \\ & 52 \end{aligned}$	2900	$\begin{aligned} & 2.27 \\ & 3.39 \\ & 3.45 \end{aligned}$	4	1.4 1.7 1.8	1007	129
40GDL6－12 $\times 10$	$\begin{aligned} & 4.2 \\ & 7.2 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.67 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 136 \\ & 120 \\ & 102 \end{aligned}$	$\begin{aligned} & 43 \\ & 52 \\ & 52 \end{aligned}$	2900	$\begin{aligned} & 3.63 \\ & 3.77 \\ & 3.84 \end{aligned}$	4	1.4 1.7 1.8	1047	133
40GDL6－12×11	$\begin{aligned} & 4.2 \\ & 7.2 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.67 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 50 \\ & \begin{array}{l} 132 \\ 112 \end{array} \end{aligned}$	$\begin{aligned} & 43 \\ & 52 \\ & 52 \end{aligned}$	2900	4.0 4.15 4.22	5.5	1.4 1.7 1.8	1132	156
40GDL6－12×12	$\begin{gathered} 4.2 \\ 6.6 \end{gathered}$	$\begin{aligned} & 1.17 \\ & 1.67 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 164 \\ & 144 \\ & 122 \end{aligned}$	$\begin{aligned} & 43 \\ & 52 \\ & 52 \end{aligned}$	2900	$\begin{aligned} & 4.36 \\ & 4.52 \\ & 4.60 \\ & \hline \end{aligned}$	5.5	1.4 1.7 1.8	1172	161
40GDL6－12 $\times 13$	$\begin{aligned} & 4.2 \\ & 6.2 \\ & 7.2 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.67 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 176 \\ & 156 \\ & 134 \end{aligned}$	$\begin{aligned} & 43 \\ & 52 \\ & 52 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 4.68 \\ & 4.90 \\ & 5.05 \\ & \hline \end{aligned}$	7.5	$\begin{array}{r}1.4 \\ 1.7 \\ 1.8 \\ 1.8 \\ \hline\end{array}$	1252	174
40GDL6－12 $\times 14$	$\begin{aligned} & 4.2 \\ & 7.2 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.67 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 188 \\ & 168 \\ & 146 \end{aligned}$	$\begin{aligned} & 43 \\ & 52 \\ & 52 \\ & 52 \end{aligned}$	2900	$\begin{aligned} & 5.00 \\ & 5.28 \\ & 5.51 \end{aligned}$	7.5	1.4 1.7 1.8	1292	180
40GDL6－12×15	$\begin{aligned} & 4.2 \\ & 6 . \\ & 7.2 \end{aligned}$	$\begin{aligned} & 1: 17 \\ & 1.67 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 200 \\ & 180 \\ & 158 \end{aligned}$	$\begin{aligned} & 43 \\ & 52 \\ & 52 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 5.32 \\ & 5.66 \\ & 5.96 \\ & \hline \end{aligned}$	7.5	1.4 1.7 1.8	1332	185
50GDL12－15 $\times 2$	$\begin{gathered} 8.4 \\ 12 \\ 14.4 \end{gathered}$	$\begin{gathered} 2.33 \\ 3.33 \\ 4.0 \end{gathered}$	$\begin{aligned} & 36 \\ & 30 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 48 \\ & 56 \\ & 53 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 1.72 \\ & 1.75 \\ & 1.85 \end{aligned}$	2.2	$\begin{aligned} & 1.4 \\ & 1.8 \\ & 1.8 \end{aligned}$	766	75
50GDL12－15 $\times 3$	$\begin{gathered} 8.4 \\ 12 \\ 14.4 \\ \hline \end{gathered}$	$\begin{aligned} & 2.33 \\ & 3.33 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 54 \\ & 45 \\ & 36 \\ & \hline \end{aligned}$	$\begin{aligned} & 48 \\ & 56 \\ & 53 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 2.57 \\ & 2.63 \\ & 2.78 \\ & \hline \end{aligned}$	3	$\begin{aligned} & 1.4 \\ & 1.8 \\ & 1.8 \\ & \hline \end{aligned}$	866	89
50GDL12－15 $\times 4$	$\begin{gathered} 8.4 \\ 12 \\ 14.4 \\ \hline \end{gathered}$	$\begin{array}{r} 2.33 \\ 3.33 \\ 4.0 \\ \hline \end{array}$	$\begin{aligned} & 72 \\ & 60 \\ & 48 \\ & \hline \end{aligned}$	$\begin{aligned} & 48 \\ & 56 \\ & 53 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 3.43 \\ & 3.5 \\ & 3.70 \\ & \hline \end{aligned}$	4	1.4 1.8 1.8	1001	103

PAGE－03

GDL型立式多级离心泉

GDL型百性能参数

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{型 氜} \& \multicolumn{2}{|c|}{流暨} \& \multirow[t]{2}{*}{扬程 （m）} \& \multirow[b]{2}{*}{\begin{tabular}{l}
效察 \\
（\％）
\end{tabular}} \& \multirow[b]{2}{*}{\begin{tabular}{l}
转速 \\
（r／min）
\end{tabular}} \& \multicolumn{2}{|l|}{功㐬} \& \multirow[t]{2}{*}{\begin{tabular}{l}
必需汽陆佘 豆 \\
（NPSH）r（m）
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { 高度 } \\
\& \text { (mm) }
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
重㣬 \\
（kg）
\end{tabular}} \\
\hline \& \(\left(\mathrm{m}^{3} / \mathrm{h}\right)\) \& （L／S） \& \& \& \& 辎功辡（kw） \& 由机功率（kw） \& \& \& \\
\hline 50GDL12－15 \(\times 5\) \& \[
\begin{gathered}
8.4 \\
12 \\
14.4
\end{gathered}
\] \& \[
\begin{aligned}
\& 2.33 \\
\& 3.33 \\
\& 4.0
\end{aligned}
\] \& \[
\begin{aligned}
\& 90 \\
\& 75 \\
\& 60
\end{aligned}
\] \& \[
\begin{aligned}
\& 48 \\
\& 56 \\
\& 53
\end{aligned}
\] \& 2900 \& \[
\begin{array}{r}
4.2 \\
4.27 \\
4.63
\end{array}
\] \& 5.5 \& \[
\begin{aligned}
\& 1.4 \\
\& 1.8 \\
\& 1.8
\end{aligned}
\] \& 1126 \& 125 \\
\hline 50GDL12－15 \(\times 6\) \& \[
\begin{gathered}
8.4 \\
12 \\
14.4
\end{gathered}
\] \& \[
\begin{aligned}
\& 2.33 \\
\& 3.33 \\
\& 4.0
\end{aligned}
\] \& \[
\begin{gathered}
108 \\
90 \\
72
\end{gathered}
\] \& \[
\begin{aligned}
\& 48 \\
\& 56 \\
\& 53
\end{aligned}
\] \& 2900 \& \[
\begin{aligned}
\& 5.15 \\
\& 5.25 \\
\& 5.55
\end{aligned}
\] \& 5.5 \& \[
\begin{aligned}
\& 1.4 \\
\& 1.8 \\
\& 1.8
\end{aligned}
\] \& 1201 \& 130 \\
\hline 50GDL12－15 \(\times 7\) \& \[
\begin{gathered}
8.4 \\
12 \\
14.4
\end{gathered}
\] \& \[
\begin{gathered}
2.33 \\
3.33 \\
4.0
\end{gathered}
\] \& \[
\begin{aligned}
\& 126 \\
\& 105 \\
\& 84
\end{aligned}
\] \& \[
\begin{aligned}
\& 48 \\
\& 56 \\
\& 53
\end{aligned}
\] \& 2900 \& \[
\begin{gathered}
6.0 \\
6.12 \\
6.48 \\
\hline
\end{gathered}
\] \& 7.5 \& \[
\begin{aligned}
\& 1.4 \\
\& 1.8 \\
\& 1.8 \\
\& \hline
\end{aligned}
\] \& 1276 \& 140 \\
\hline 50GDL12－15 \(\times 8\) \& \[
\begin{gathered}
8.4 \\
12 \\
14.4 \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& 2.33 \\
\& 3.33 \\
\& 4.0 \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
144 \\
120 \\
96 \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& 48 \\
\& 56 \\
\& 53 \\
\& \hline
\end{aligned}
\] \& 2900 \& \[
\begin{aligned}
\& 6.86 \\
\& 7.0 \\
\& 7.40 \\
\& \hline
\end{aligned}
\] \& 7.5 \& 1.4
1.8
1.8 \& 1351 \& 147 \\
\hline 50GDL12－15 \(\times 9\) \& \[
\begin{gathered}
8.4 \\
12 \\
14.4
\end{gathered}
\] \& \[
\begin{aligned}
\& 2.33 \\
\& 3.33 \\
\& 4.0 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 162 \\
\& 135 \\
\& 108 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 48 \\
\& 56 \\
\& 53 \\
\& \hline
\end{aligned}
\] \& 2900 \& \[
\begin{aligned}
\& \hline 7.72 \\
\& 7.87 \\
\& 8.33 \\
\& \hline
\end{aligned}
\] \& 11 \& \[
\begin{aligned}
\& 1.4 \\
\& 1.8 \\
\& 1.8 \\
\& \hline
\end{aligned}
\] \& 1556 \& 203 \\
\hline 50GDL12－15 \(\times 10\) \& \[
\begin{gathered}
8.4 \\
12 \\
14.4 \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
2.33 \\
3.33 \\
4.0 \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& 180 \\
\& 150 \\
\& 120 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 48 \\
\& 56 \\
\& 53 \\
\& \hline
\end{aligned}
\] \& 2900 \& \[
\begin{aligned}
\& 8.58 \\
\& 8.75 \\
\& 9.25 \\
\& \hline
\end{aligned}
\] \& 11 \& \[
\begin{aligned}
\& 1.4 \\
\& 1.8 \\
\& 1.8 \\
\& \hline
\end{aligned}
\] \& 1631 \& 208 \\
\hline 50GDL \(12-15 \times 11\) \& \[
\begin{gathered}
8.4 \\
12 \\
14.4
\end{gathered}
\] \& \[
\begin{aligned}
\& 2.33 \\
\& 3.33 \\
\& 4.0 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 195 \\
\& 165 \\
\& 135 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 48 \\
\& 56 \\
\& 53
\end{aligned}
\] \& 2900 \& \[
\begin{aligned}
\& 9.29 \\
\& 9.63 \\
\& 9.99 \\
\& \hline
\end{aligned}
\] \& 15 \& \[
\begin{aligned}
\& 1.4 \\
\& 1.8 \\
\& 1.8
\end{aligned}
\] \& 1706 \& 222 \\
\hline 50GDL12－15 \(\times 12\) \& \[
\begin{gathered}
8.4 \\
12 \\
14.4 \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& 2.33 \\
\& 3.33 \\
\& 4.0 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 210 \\
\& 180 \\
\& 150 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 48 \\
\& 56 \\
\& 53 \\
\& \hline
\end{aligned}
\] \& 2900 \& \[
\begin{aligned}
\& 10.00 \\
\& 10.50 \\
\& 11.10 \\
\& \hline
\end{aligned}
\] \& 15 \& \[
\begin{aligned}
\& 1.4 \\
\& 1.8 \\
\& 1.8 \\
\& \hline
\end{aligned}
\] \& 1781 \& 230 \\
\hline 50GDL18－15×2 \& \[
\begin{gathered}
12.6 \\
18 \\
21.6 \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\hline 3.5 \\
5 \\
6 \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& 36 \\
\& 30 \\
\& 25 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 53 \\
\& 62 \\
\& 62
\end{aligned}
\] \& 2900 \& \[
\begin{array}{r}
2.33 \\
2.37 \\
2.37 \\
\hline
\end{array}
\] \& 3 \& \begin{tabular}{l}
1.4 \\
1.8 \\
1.8 \\
\hline
\end{tabular} \& 791 \& 83 \\
\hline 50GDL18－15 \(\times 3\) \& \[
\begin{gathered}
12.6 \\
18 \\
21.6
\end{gathered}
\] \& \[
\begin{gathered}
3.5 \\
5 \\
6 \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
54 \\
45 \\
37.5 \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& 53 \\
\& 62 \\
\& 62 \\
\& \hline
\end{aligned}
\] \& 2900 \& \[
\begin{aligned}
\& 3.5 \\
\& 3.56 \\
\& 3.56 \\
\& \hline
\end{aligned}
\] \& 4 \& \begin{tabular}{l}
1.4 \\
1.8 \\
1.8 \\
\hline
\end{tabular} \& 926 \& 99 \\
\hline 50GDL18－15 \(\times 4\) \& \[
\begin{aligned}
\& 12.6 \\
\& 18 \\
\& 21.6 \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
3.5 \\
5 \\
6 \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& 72 \\
\& 60 \\
\& 50 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 53 \\
\& 62 \\
\& 62
\end{aligned}
\] \& 2900 \& \[
\begin{aligned}
\& 4.66 \\
\& 4.75 \\
\& 4.75 \\
\& \hline
\end{aligned}
\] \& 5.5 \& \begin{tabular}{l}
1.4 \\
1.8 \\
1.8 \\
\hline
\end{tabular} \& 1051 \& 120 \\
\hline 50GDL18－15 \(\times 5\) \& \[
\begin{aligned}
\& 12.6 \\
\& 18 \\
\& 21.6 \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
3.5 \\
5 \\
6 \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
90 \\
75 \\
62.5 \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& 53 \\
\& 62 \\
\& 62 \\
\& \hline
\end{aligned}
\] \& 2900 \& \[
\begin{aligned}
\& 5.83 \\
\& 5.93 \\
\& 5.93 \\
\& \hline
\end{aligned}
\] \& 7.5 \& \[
\begin{aligned}
\& 1.4 \\
\& 1.8 \\
\& 1.8 \\
\& \hline
\end{aligned}
\] \& 1126 \& 130 \\
\hline 50GDL \(18-15 \times 6\) \& \[
\begin{aligned}
\& 12.6 \\
\& 18 \\
\& 21.6 \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
3.5 \\
5 \\
6 \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
108 \\
90 \\
75
\end{gathered}
\] \& \[
\begin{aligned}
\& 53 \\
\& 62 \\
\& 62
\end{aligned}
\] \& 2900 \& \[
\begin{aligned}
\& \hline 7.0 \\
\& 7.12 \\
\& 7.12 \\
\& \hline
\end{aligned}
\] \& 7.5 \& 1.4
1.8
1.8 \& 1201 \& 135 \\
\hline 50GDL \(18-15 \times 7\) \& \[
\begin{aligned}
\& 12.6 \\
\& 18 \\
\& 21.6 \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
3.5 \\
5 \\
6 \\
\hline
\end{gathered}
\] \& \[
\begin{array}{r}
125 \\
105 \\
82.5 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 53 \\
\& 62 \\
\& 62
\end{aligned}
\] \& 2900 \& \[
\begin{aligned}
\& 8.16 \\
\& 8.30 \\
\& 8.31 \\
\& \hline
\end{aligned}
\] \& 11 \& \[
\begin{array}{r}
1.4 \\
1.8 \\
1.8 \\
\hline
\end{array}
\] \& 1406 \& 185 \\
\hline 50GDL \(18-15 \times 8\) \& \[
\begin{array}{r}
12.6 \\
18 \\
21.6 \\
\hline
\end{array}
\] \& \[
\begin{gathered}
3.5 \\
5 \\
6 \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& 141 \\
\& 120 \\
\& 100 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 53 \\
\& 62 \\
\& 62
\end{aligned}
\] \& 2900 \& \[
\begin{aligned}
\& 9.32 \\
\& 9.49 \\
\& 9.49 \\
\& \hline
\end{aligned}
\] \& 11 \& \[
\begin{array}{r}
1.4 \\
1.8 \\
1.8 \\
\hline
\end{array}
\] \& 1481 \& 192 \\
\hline 50GDL18－15 \(\times 9\) \& \[
\begin{aligned}
\& 12.6 \\
\& 18 \\
\& 21.6 \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
3.5 \\
5 \\
6 \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
162 \\
135 \\
112.5
\end{gathered}
\] \& \[
\begin{aligned}
\& 53 \\
\& 62 \\
\& 62
\end{aligned}
\] \& 2900 \& \[
\begin{aligned}
\& 10.49 \\
\& 10.68 \\
\& 10.68 \\
\& \hline
\end{aligned}
\] \& 15 \& \[
\begin{aligned}
\& 1.4 \\
\& 1.8 \\
\& 1.8 \\
\& \hline
\end{aligned}
\] \& 1556 \& 208 \\
\hline 50GDL18－15 \(\times 10\) \& \[
\begin{aligned}
\& 12.6 \\
\& 18 \\
\& 21.6 \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
3.5 \\
5 \\
6
\end{gathered}
\] \& \[
\begin{aligned}
\& 180 \\
\& 150 \\
\& 125 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 53 \\
\& 62 \\
\& 62 \\
\& \hline
\end{aligned}
\] \& 2900 \& \[
\begin{aligned}
\& 11.66 \\
\& 11.87 \\
\& 11.87 \\
\& \hline
\end{aligned}
\] \& 15 \& \[
\begin{array}{r}
1.4 \\
1.8 \\
1.8 \\
\hline
\end{array}
\] \& 1631 \& 213 \\
\hline 50GDL18－15 × 11 \& \[
\begin{gathered}
12.6 \\
18 \\
21.6 \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\hline 3.5 \\
5 \\
6 \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& 195 \\
\& 165 \\
\& 140
\end{aligned}
\] \& \[
\begin{aligned}
\& 53 \\
\& 62 \\
\& 62 \\
\& \hline
\end{aligned}
\] \& 2900 \& \[
\begin{aligned}
\& 12.60 \\
\& 13.00 \\
\& 13.30 \\
\& \hline
\end{aligned}
\] \& 15 \& 1.4
1.8
1.8

1.8 \& 1751 \& 232

\hline 50GDL18－15 $\times 12$ \& \[
$$
\begin{aligned}
& 12.6 \\
& 1.8 \\
& 21.6 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
3.5 \\
5 \\
6
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 210 \\
& 180 \\
& 155 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 53 \\
& 62 \\
& 62 \\
& \hline
\end{aligned}
$$

\] \& 2900 \& \[

$$
\begin{aligned}
& 13.60 \\
& 14.20 \\
& 14.70 \\
& \hline
\end{aligned}
$$

\] \& 15 \& \[

$$
\begin{array}{r}
1.4 \\
1.8 \\
1.8 \\
\hline
\end{array}
$$
\] \& 1826 \& 240

\hline 65GDL24－12 $\times 2$ \& \[
$$
\begin{gathered}
16.8 \\
24 \\
28.8 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
4.67 \\
6.67 \\
8 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 27 \\
& 24 \\
& 22
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 56 \\
& 65 \\
& 67 \\
& \hline
\end{aligned}
$$

\] \& 2900 \& \[

$$
\begin{aligned}
& 2.21 \\
& 2.41 \\
& 2.57 \\
& \hline
\end{aligned}
$$

\] \& 3 \& \[

$$
\begin{gathered}
2.9 \\
3 \\
3.1 \\
\hline
\end{gathered}
$$
\] \& 821 \& 98

\hline 65GDL24－12 $\times 3$ \& \[
$$
\begin{array}{r}
16.8 \\
24 \\
28.8 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{gathered}
4.67 \\
6.67 \\
8 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
40.5 \\
36 \\
33 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 56 \\
& 65 \\
& 67 \\
& \hline
\end{aligned}
$$

\] \& 2900 \& \[

$$
\begin{aligned}
& 3.31 \\
& 3.62 \\
& 3.87 \\
& \hline
\end{aligned}
$$

\] \& 4 \& \[

$$
\begin{aligned}
& 2.9 \\
& 3 \\
& 3.1 \\
& \hline
\end{aligned}
$$
\] \& 936 \& 113

\hline 65GDL24－12 $\times 4$ \& \[
$$
\begin{gathered}
16.8 \\
24 \\
28.8 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
4.67 \\
6.67 \\
8 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 54 \\
& 48 \\
& 44
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 56 \\
& 65 \\
& 67 \\
& \hline
\end{aligned}
$$
\] \& 2900 \& 4.41

4.83

5.15 \& 5.5 \& $$
\begin{aligned}
& 2.9 \\
& 3 \\
& 3.1 \\
& \hline
\end{aligned}
$$ \& 1061 \& 134

\hline 65GDL24－12 $\times 5$ \& \[
$$
\begin{gathered}
16.8 \\
24 \\
28.8
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
4.67 \\
6.67 \\
8 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 67.5 \\
& 60 \\
& 55 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 56 \\
& 65 \\
& 67
\end{aligned}
$$

\] \& 2900 \& \[

$$
\begin{aligned}
& 5.52 \\
& 6.03 \\
& 6.44 \\
& \hline
\end{aligned}
$$

\] \& 7.5 \& \[

$$
\begin{aligned}
& 2.9 \\
& 3 \\
& 3.1 \\
& \hline
\end{aligned}
$$
\] \& 1136 \& 143

\hline 65GDL24－12×6 \& $$
\begin{aligned}
& 16.8 \\
& 24 \\
& 28.8 \\
& \hline
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 4.67 \\
& 6.67 \\
& 8 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 81 \\
& 72 \\
& 66 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 56 \\
& 65 \\
& 67 \\
& \hline
\end{aligned}
$$

\] \& 2900 \& \[

$$
\begin{aligned}
& 6.62 \\
& 7.24 \\
& 7.73 \\
& \hline
\end{aligned}
$$

\] \& 7.5 \& \[

$$
\begin{aligned}
& 2.9 \\
& 3 \\
& 3.1 \\
& \hline
\end{aligned}
$$
\] \& 1211 \& 148

\hline 65GDL24－12×7 \& $$
\begin{array}{r}
16.8 \\
24 \\
28.8 \\
\hline
\end{array}
$$ \& \[

$$
\begin{gathered}
4.67 \\
6.67 \\
8 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 94.5 \\
& 84 \\
& 77 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 56 \\
& 65 \\
& 67 \\
& \hline
\end{aligned}
$$

\] \& 2900 \& \[

$$
\begin{aligned}
& 7.72 \\
& 8.45 \\
& 9.01 \\
& \hline
\end{aligned}
$$

\] \& 11 \& \[

$$
\begin{aligned}
& 2.9 \\
& 3 \\
& 3.1 \\
& \hline
\end{aligned}
$$
\] \& 1416 \& 198

\hline
\end{tabular}

GDL型踏性能参数

型 $\frac{\square}{5}$	流覀		扬程 （m）	效变 （\％）	转速 （r／min）	功器		必需汽他余 量 （NPSH）（m）	高度 （mm）	重臺 （kg）
	$\left(\mathrm{m}^{3} / \mathrm{h}\right)$	（L／S）				組功新（kw）				
65GDL24－12×8	$\begin{gathered} 16.8 \\ 24 \\ 28.8 \\ \hline \end{gathered}$	$\begin{aligned} & 4.67 \\ & 6.67 \\ & 8 \end{aligned}$	$\begin{gathered} 108 \\ 96 \\ 88 \end{gathered}$	$\begin{aligned} & 56 \\ & 65 \\ & 67 \end{aligned}$	2900	$\begin{aligned} & 8.83 \\ & 9.65 \\ & 10.3 \\ & \hline \end{aligned}$	11	$\begin{gathered} 2.9 \\ 3 \\ 3.1 \\ \hline \end{gathered}$	1491	202
65GDL24－12×9	$\begin{gathered} 16.8 \\ 24 \\ 28.8 \\ \hline \end{gathered}$	$\begin{aligned} & 4.67 \\ & 6.67 \\ & 8 \end{aligned}$	$\begin{gathered} 121.5 \\ 108 \\ 99 \end{gathered}$	$\begin{aligned} & 56 \\ & 65 \\ & 67 \end{aligned}$	2900	$\begin{array}{r} 9.93 \\ 10.85 \\ 11.59 \end{array}$	15	$\begin{aligned} & 2.9 \\ & 3 . \\ & 3.1 \\ & \hline \end{aligned}$	1556	213
65GDL24－12 $\times 10$	$\begin{array}{r} 16.8 \\ 24 \\ 28.8 \\ \hline \end{array}$	$\begin{aligned} & 4.67 \\ & 6.67 \\ & 8 \end{aligned}$	$\begin{aligned} & 135 \\ & 120 \\ & 110 \end{aligned}$	$\begin{aligned} & 56 \\ & 65 \\ & 67 \end{aligned}$	2900	$\begin{array}{r} 11.0 \\ 12.06 \\ 12.88 \\ \hline \end{array}$	15	$\begin{aligned} & 2.9 \\ & 3 \\ & 3.1 \\ & \hline \end{aligned}$	1641	221
65GDL24－12 $\times 11$	$\begin{array}{r} 16.8 \\ 24 \\ 28.8 \\ \hline \end{array}$	$\begin{gathered} 4.67 \\ 6.67 \\ 8 \end{gathered}$	$\begin{aligned} & 147 \\ & 132 \\ & 122 \\ & \hline \end{aligned}$	$\begin{aligned} & 56 \\ & 65 \\ & 67 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 12.00 \\ & 13.30 \\ & 14.30 \end{aligned}$	15	$\begin{aligned} & 2.9 \\ & 3.9 \\ & 3.1 \end{aligned}$	1731	239
$65 G D L 24-12 \times 12$	$\begin{gathered} 16.8 \\ 24 \\ 28.8 \\ \hline \end{gathered}$	$\begin{aligned} & 4.67 \\ & 6.67 \\ & 8 \end{aligned}$	$\begin{aligned} & 159 \\ & 144 \\ & 134 \end{aligned}$	$\begin{aligned} & 56 \\ & 65 \\ & 67 \end{aligned}$	2900	$\begin{aligned} & 13.00 \\ & 14.50 \\ & 15.70 \end{aligned}$	15	$\begin{gathered} 2.9 \\ 3 \\ 3.1 \\ \hline \end{gathered}$	1816	249
80GDL36－12 $\times 2$	$\begin{gathered} 25.2 \\ 36 \\ 43.2 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ 10 \\ 12 \\ \hline \end{gathered}$	$\begin{aligned} & 27 \\ & 24 \\ & 21 \\ & \hline \end{aligned}$	$\begin{aligned} & 59 \\ & 68 \\ & 67 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 3.14 \\ & 3.46 \\ & 3.68 \\ & \hline \end{aligned}$	4	$\begin{gathered} 3.5 \\ 4 \\ 4.2 \\ \hline \end{gathered}$	917	163
80GDL36－12 $\times 3$	$\begin{gathered} 25.2 \\ 36 \\ 43.2 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7 \\ & 10 \\ & 12 \\ & \hline \end{aligned}$	$\begin{gathered} 40.5 \\ 36 \\ 31.5 \\ \hline \end{gathered}$	$\begin{aligned} & 59 \\ & 68 \\ & 67 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 4.71 \\ & 5.19 \\ & 5.53 \end{aligned}$	5.5	$\begin{gathered} 3.5 \\ 4 \\ 4.2 \end{gathered}$	1052	195
80GDL36－12 $\times 4$	$\begin{gathered} 25.2 \\ 36 \\ 43.2 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ 10 \\ 12 \\ \hline \end{gathered}$	$\begin{aligned} & 54 \\ & 48 \\ & 42 \\ & \hline \end{aligned}$	$\begin{array}{r} 59 \\ 68 \\ 67 \\ \hline \end{array}$	2900	$\begin{aligned} & 6.29 \\ & 6.92 \\ & 7.37 \\ & \hline \end{aligned}$	7.5	$\begin{gathered} 3.5 \\ 4 \\ 4.2 \end{gathered}$	1137	210
80GDL36－12 $\times 5$	$\begin{gathered} 25.2 \\ 36 \\ 43.2 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ 10 \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} 67.5 \\ 60 \\ 52.5 \\ \hline \end{gathered}$	$\begin{aligned} & 59 \\ & 68 \\ & 67 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 7.86 \\ & 8.67 \\ & 9.22 \\ & \hline \end{aligned}$	11	$\begin{gathered} 3.5 \\ 4 \\ 4.2 \end{gathered}$	1352	245
80GDL36－12 $\times 6$	$\begin{gathered} 25.2 \\ 36 \\ 43.2 \\ \hline \end{gathered}$	$\begin{aligned} & 7 \\ & 10 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & 81 \\ & 72 \\ & 63 \\ & \hline \end{aligned}$	$\begin{aligned} & 59 \\ & 68 \\ & 67 \\ & \hline \end{aligned}$	2900	$\begin{gathered} 9.43 \\ 10.39 \\ 11.06 \\ \hline \end{gathered}$	11	$\begin{gathered} 3.5 \\ 4 \\ 4.2 \end{gathered}$	1437	220
80GDL36－12 $\times 7$	$\begin{gathered} 25.2 \\ 36 \\ 43.2 \\ \hline \end{gathered}$	$\begin{aligned} & 7 \\ & 10 \\ & 12 \\ & \hline \end{aligned}$	$\begin{gathered} 94.5 \\ 84 \\ 73.5 \\ \hline \end{gathered}$	$\begin{aligned} & 59 \\ & 68 \\ & 67 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 11.0 \\ & 12.12 \\ & 12.9 \\ & \hline \end{aligned}$	15	$\begin{gathered} 3.5 \\ 4 \\ 4.2 \\ \hline \end{gathered}$	1522	265
80GDL36－12 $\times 8$	$\begin{gathered} 25.2 \\ 36 \\ 43.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 \\ 10 \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} 108 \\ 96 \\ 84 \\ \hline \end{gathered}$	$\begin{aligned} & 59 \\ & 68 \\ & 67 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 12.58 \\ & 13.85 \\ & 14.75 \\ & \hline \end{aligned}$	15	$\begin{gathered} 3.5 \\ 4 \\ 4.2 \\ \hline \end{gathered}$	1607	275
80GDL36－12 $\times 9$	$\begin{gathered} 25.2 \\ 36 \\ 43.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 \\ 10 \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} 121.5 \\ 108 \\ 94.5 \\ \hline \end{gathered}$	$\begin{aligned} & 59 \\ & 68 \\ & 67 \\ & \hline \end{aligned}$	2900	$\begin{gathered} 14.14 \\ 15.59 \\ 16.5 \\ \hline \end{gathered}$	18.5	$\begin{gathered} 3.5 \\ 4 \\ 4.2 \\ \hline \end{gathered}$	1737	295
80GDL36－12 $\times 10$	$\begin{gathered} 25.2 \\ 36 \\ 43.2 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7 \\ & 10 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & 135 \\ & 120 \\ & 115 \\ & \hline \end{aligned}$	$\begin{aligned} & 59 \\ & 68 \\ & 67 \\ & \hline \end{aligned}$	2900	$\begin{gathered} 15.71 \\ 17.31 \\ 18.4 \\ \hline \end{gathered}$	18.5	$\begin{gathered} 3.5 \\ 4 \\ 4.2 \\ \hline \end{gathered}$	1822	310
80GDL36－12 $\times 11$	$\begin{gathered} 25.2 \\ 36 \\ 43.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 \\ 10 \\ 12 \\ \hline \end{gathered}$	$\begin{aligned} & 145 \\ & 132 \\ & 126 \\ & \hline \end{aligned}$	$\begin{aligned} & 59 \\ & 68 \\ & 67 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 16.81 \\ & 18.32 \\ & 19.60 \\ & \hline \end{aligned}$	22	$\begin{gathered} 3.5 \\ 4 \\ 4.2 \end{gathered}$	1911	355
80GDL36－12 $\times 12$	$\begin{gathered} 25.2 \\ 36 \\ 43.2 \\ \hline \end{gathered}$	$\begin{array}{r} 7 \\ 10 \\ 12 \\ \hline \end{array}$	$\begin{array}{r} 160 \\ 144 \\ 134 \\ \hline \end{array}$	$\begin{aligned} & 59 \\ & 68 \\ & 67 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 17.56 \\ & 19.25 \\ & 20.63 \\ & \hline \end{aligned}$	22	$\begin{gathered} 3.5 \\ 4 \\ 4.2 \end{gathered}$	2026	365
80GDL54－14×2	$\begin{gathered} 37.8 \\ 54 \\ 64.8 \\ \hline \end{gathered}$	$\begin{gathered} 10.5 \\ 15 \\ 18 \\ \hline \end{gathered}$	$\begin{aligned} & 32 \\ & 28 \\ & 25 \\ & \hline \end{aligned}$	$\begin{gathered} 62 \\ 70 \\ 73.5 \\ \hline \end{gathered}$	2900	$\begin{aligned} & 5.32 \\ & 5.88 \\ & 6.01 \\ & \hline \end{aligned}$	7.5	$\begin{gathered} 3.7 \\ 4 \\ 4.2 \end{gathered}$	967	185
80GDLL54－14×3	$\begin{gathered} \hline 37.8 \\ 54 \\ 64.8 \\ \hline \end{gathered}$	$\begin{gathered} 10.5 \\ 15 \\ 18 \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ 42 \\ 37.5 \\ \hline \end{gathered}$	$\begin{gathered} 62 \\ 70 \\ 73.5 \\ \hline \end{gathered}$	2900	$\begin{aligned} & 7.97 \\ & 8.82 \\ & 9.01 \\ & \hline \end{aligned}$	11	$\begin{gathered} 3.7 \\ 4 \\ 4.2 \end{gathered}$	1182	245
80GDL54－14×4	$\begin{gathered} 37.8 \\ 54 \\ 64.8 \\ \hline \end{gathered}$	$\begin{gathered} 10.5 \\ 15 \\ 18 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 64 \\ & 56 \\ & 50 \\ & \hline \end{aligned}$	$\begin{gathered} 62 \\ 70 \\ 73.5 \\ \hline \end{gathered}$	2900	$\begin{aligned} & 10.13 \\ & 11.76 \\ & 1201 \end{aligned}$	15	$\begin{gathered} 3.7 \\ 4 \\ 4.2 \end{gathered}$	1267	260
80GDL54－14×5	$\begin{gathered} 37.8 \\ 54 \\ 64.8 \\ \hline \end{gathered}$	$\begin{gathered} 10.5 \\ 15 \\ 18 \\ \hline \end{gathered}$	$\begin{gathered} 80 \\ 70 \\ 62.5 \\ \hline \end{gathered}$	$\begin{gathered} 62 \\ 70 \\ 73.5 \\ \hline \end{gathered}$	2900	$\begin{aligned} & 13.3 \\ & 14.7 \\ & 15.0 \\ & \hline \end{aligned}$	18.5	$\begin{gathered} 3.7 \\ 4 \\ 4.2 \end{gathered}$	1397	260
80GDL54－14×6	$\begin{gathered} \hline 37.8 \\ 54 \\ 64.8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 10.5 \\ 15 \\ 18 \\ \hline \end{gathered}$	$\begin{aligned} & 96 \\ & 84 \\ & 75 \\ & \hline \end{aligned}$	$\begin{gathered} 62 \\ 70 \\ 73.5 \\ \hline \end{gathered}$	2900	$\begin{gathered} 15.9 \\ 17.64 \\ 18.0 \\ \hline \end{gathered}$	18.5	$\begin{gathered} 3.7 \\ 4 \\ 4.2 \end{gathered}$	1482	235
80GDL54－14×7	$\begin{gathered} 37.8 \\ 54 \\ 64.8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 10.5 \\ 15 \\ 18 \\ \hline \end{gathered}$	$\begin{gathered} \hline 112 \\ 98 \\ 87.5 \\ \hline \end{gathered}$	$\begin{gathered} 62 \\ 70 \\ 73.5 \\ \hline \end{gathered}$	2900	$\begin{gathered} 18.6 \\ 20.58 \\ 21.0 \\ \hline \end{gathered}$	22	$\begin{gathered} 3.7 \\ 4 \\ 4.2 \end{gathered}$	1592	315
80GDL54－14×8	$\begin{gathered} 37.8 \\ 54 \\ 64.8 \end{gathered}$	$\begin{gathered} \hline 10.5 \\ 15 \\ 18 \\ \hline \end{gathered}$	$\begin{aligned} & 128 \\ & 112 \\ & 100 \\ & \hline \end{aligned}$	$\begin{gathered} 62 \\ 70 \\ 73.5 \\ \hline \end{gathered}$	2900	$\begin{array}{r} 21.3 \\ 23.54 \\ 24.0 \\ \hline \end{array}$	30	$\begin{gathered} 3.7 \\ 4 \\ 4.2 \end{gathered}$	1607	390
80GDL54－14×9	$\begin{gathered} 37.8 \\ 54 \\ 64.8 \\ \hline \end{gathered}$	$\begin{gathered} 10.5 \\ 15 \\ 18 \\ \hline \end{gathered}$	$\begin{gathered} 144 \\ 126 \\ 112.5 \\ \hline \end{gathered}$	$\begin{gathered} 62 \\ 70 \\ 73.5 \end{gathered}$	2900	$\begin{gathered} 23.9 \\ 26.49 \\ 27.0 \end{gathered}$	30	$\begin{gathered} 3.7 \\ 4 \\ 4.2 \end{gathered}$	1757	400
80GDL54－14×10	$\begin{gathered} 37.8 \\ 54 \\ 64.8 \\ \hline \end{gathered}$	$\begin{gathered} 10.5 \\ 15 \\ 18 \\ \hline \end{gathered}$	$\begin{aligned} & 160 \\ & 140 \\ & 125 \\ & \hline \end{aligned}$	$\begin{gathered} 62 \\ 70 \\ 73.5 \\ \hline \end{gathered}$	2900	$\begin{gathered} 26.6 \\ 29.43 \\ 30.0 \\ \hline \end{gathered}$	37	$\begin{gathered} 3.7 \\ 4 \\ 4.2 \end{gathered}$	1882	425
80GDL50－20 $\times 2$	$\begin{gathered} 40 \\ 50 \\ 68.4 \\ \hline \end{gathered}$	$\begin{array}{r} 11.1 \\ 13.9 \\ 19 \\ \hline \end{array}$	$\begin{gathered} 43.6 \\ 40 \\ 31.7 \\ \hline \end{gathered}$	$\begin{aligned} & 70 \\ & 75 \\ & 70 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 6.78 \\ & 7.26 \\ & 8.44 \\ & \hline \end{aligned}$	11	$\begin{aligned} & 3.1 \\ & 3.8 \\ & 5.3 \\ & \hline \end{aligned}$	1117	230

PAGE－05

超盾机械集团

GDL型泵性能参数

型	流丵		扬程 （m）	效荠 （\％）	转速 （r／min）	功涘		必需汽行余 喜 （NPSH）r（m）	高度 （mm）	重空 （kg）
	$\left(\mathrm{m}^{3} / \mathrm{h}\right)$	（L／s）				辑功㐬（kw）	电机功率（0w）			
80GDL50－20×3	$\begin{gathered} 40 \\ 50 \\ 68.4 \end{gathered}$	$\begin{gathered} 11.1 \\ 13.9 \\ 19 \end{gathered}$	$\begin{gathered} 65.4 \\ 60 \\ 47.5 \end{gathered}$	$\begin{aligned} & 70 \\ & 75 \\ & 70 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 10.18 \\ & 10.89 \\ & 12.65 \\ & \hline \end{aligned}$	15	$\begin{aligned} & 3.1 \\ & 3.8 \\ & 5.3 \\ & \hline \end{aligned}$	1147	250
80GDL50－20 $\times 4$	$\begin{gathered} 40 \\ 50 \\ 68.4 \end{gathered}$	$\begin{gathered} 11.1 \\ 13.9 \\ 19 \end{gathered}$	$\begin{gathered} 87.2 \\ 80 \\ 63.4 \end{gathered}$	$\begin{aligned} & 70 \\ & 75 \\ & 70 \end{aligned}$	2900	$\begin{aligned} & 13.57 \\ & 14.52 \\ & 16.87 \end{aligned}$	18.5	$\begin{aligned} & 3.1 \\ & 3.8 \\ & 5.3 \end{aligned}$	1307	270
80GDL50－20 $\times 5$	$\begin{gathered} 40 \\ 50 \\ 68.4 \end{gathered}$	$\begin{gathered} 11.1 \\ 13.9 \\ 19 \end{gathered}$	$\begin{aligned} & 109 \\ & 100 \\ & 79.3 \end{aligned}$	$\begin{aligned} & 70 \\ & 75 \\ & 70 \end{aligned}$	2900	$\begin{aligned} & 16.96 \\ & 18.16 \\ & 21.09 \\ & \hline \end{aligned}$	22	$\begin{aligned} & 3.1 \\ & 3.8 \\ & 5.3 \end{aligned}$	1422	300
80GDL50－20×6	$\begin{gathered} 40 \\ 50 \\ 68.4 \end{gathered}$	$\begin{gathered} 11.1 \\ 13.9 \\ 19 \\ \hline \end{gathered}$	$\begin{aligned} & 130 \\ & 120 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 75 \\ & 70 \end{aligned}$	2900	$\begin{array}{r} 20.35 \\ 21.78 \\ 25.31 \\ \hline \end{array}$	30	$\begin{aligned} & \hline 3.1 \\ & 3.8 \\ & 5.3 \\ & \hline \end{aligned}$	1617	340
80GDL50－20×7	$\begin{gathered} \hline 40 \\ 50 \\ 68.4 \end{gathered}$	$\begin{gathered} \hline 11.1 \\ 13.9 \\ 19 \\ \hline \end{gathered}$	$\begin{aligned} & 152 \\ & 140 \\ & 112 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70 \\ & 75 \\ & 70 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 23.75 \\ & 25.42 \\ & 29.80 \\ & \hline \end{aligned}$	30	$\begin{aligned} & 3.1 \\ & 3.8 \\ & 5.3 \\ & \hline \end{aligned}$	1702	380
$80 \mathrm{GDL50-20} \mathrm{\times 8}$	$\begin{gathered} 40 \\ 50 \\ 68.4 \end{gathered}$	$\begin{gathered} 11.1 \\ 13.9 \\ 19 \\ \hline \end{gathered}$	$\begin{aligned} & 174 \\ & 160 \\ & 129 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 75 \\ & 70 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 27.14 \\ & 29.05 \\ & 34.27 \\ & \hline \end{aligned}$	37	$\begin{aligned} & 3.1 \\ & 3.8 \\ & 5.3 \\ & \hline \end{aligned}$	1787	400
100GDL72－14×2	$\begin{gathered} 50.4 \\ 72 \\ 86.4 \end{gathered}$	$\begin{aligned} & 14 \\ & 20 \\ & 24 \end{aligned}$	$\begin{aligned} & 32 \\ & 28 \\ & 24 \end{aligned}$	$\begin{aligned} & 64 \\ & 73 \\ & 73 \end{aligned}$	2900	$\begin{aligned} & 6.87 \\ & 7.53 \\ & 7.74 \end{aligned}$	11	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	1200	240
100GDL72－14×3	$\begin{gathered} 50.4 \\ 72 \\ 86.4 \end{gathered}$	$\begin{aligned} & 14 \\ & 20 \\ & 24 \end{aligned}$	$\begin{aligned} & 48 \\ & 42 \\ & 36 \end{aligned}$	$\begin{aligned} & 64 \\ & 73 \\ & 73 \end{aligned}$	2900	$\begin{gathered} 10.3 \\ 11.29 \\ 11.61 \end{gathered}$	15	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4 . \end{aligned}$	1335	265
100GDL72－14×4	$\begin{gathered} 50.4 \\ 72 \\ 86.4 \end{gathered}$	$\begin{aligned} & 14 \\ & 20 \\ & 24 \end{aligned}$	$\begin{aligned} & 64 \\ & 56 \\ & 48 \end{aligned}$	$\begin{aligned} & 64 \\ & 73 \\ & 73 \end{aligned}$	2900	$\begin{gathered} 13.7 \\ 15.05 \\ 15.48 \end{gathered}$	18.5	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	1460	285
100GDL72－14×5	$\begin{gathered} \hline 50.4 \\ 72 \\ 86.4 \\ \hline \end{gathered}$	$\begin{aligned} & 14 \\ & 20 \\ & 24 \end{aligned}$	$\begin{aligned} & 80 \\ & 70 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 64 \\ & 73 \\ & 73 \end{aligned}$	2900	$\begin{aligned} & 17.17 \\ & 18.81 \\ & 19.35 \\ & \hline \end{aligned}$	22	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	1650	315
100GDL72－14 $\times 6$	$\begin{gathered} 50.4 \\ 72 \\ 86.4 \\ \hline \end{gathered}$	$\begin{aligned} & 14 \\ & 20 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 96 \\ & 84 \\ & 72 \end{aligned}$	$\begin{aligned} & 64 \\ & 73 \\ & 73 \end{aligned}$	2900	$\begin{aligned} & 20.6 \\ & 22.57 \\ & 23.22 \\ & \hline \end{aligned}$	30	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	1740	350
100GDL72－14×7	$\begin{gathered} \hline 50.4 \\ 72 \\ 86.4 \\ \hline \end{gathered}$	$\begin{aligned} & 14 \\ & 20 \\ & 24 \\ & \hline \end{aligned}$	$\begin{gathered} 112 \\ 98 \\ 84 \\ \hline \end{gathered}$	$\begin{aligned} & 64 \\ & 73 \\ & 73 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 24.03 \\ & 26.34 \\ & 27.09 \\ & \hline \end{aligned}$	30	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	1825	400
100GDL72－14×8	$\begin{gathered} 50.4 \\ 72 \\ 86.4 \end{gathered}$	$\begin{aligned} & 14 \\ & 20 \\ & 24 \end{aligned}$	$\begin{aligned} & \hline 128 \\ & 112 \\ & 96 \end{aligned}$	$\begin{aligned} & 64 \\ & 73 \\ & 73 \end{aligned}$	2900	$\begin{gathered} 27.4 \\ 30.1 \\ 30.96 \end{gathered}$	37	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	1900	420
$100 \mathrm{GDL} 72-14 \times 9$	$\begin{gathered} \hline 50.4 \\ 72 \\ 86.4 \\ \hline \end{gathered}$	$\begin{aligned} & 14 \\ & 20 \\ & 24 \end{aligned}$	$\begin{aligned} & 144 \\ & 126 \\ & 108 \end{aligned}$	$\begin{aligned} & 64 \\ & 73 \\ & 73 \end{aligned}$	2900	$\begin{gathered} 30.9 \\ 33.9 \\ 34.83 \end{gathered}$	37	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	1980	430
100GDL72－14×10	$\begin{gathered} \hline 50.4 \\ 72 \\ 86.4 \\ \hline \end{gathered}$	$\begin{aligned} & 14 \\ & 20 \\ & 24 \end{aligned}$	$\begin{aligned} & 160 \\ & 140 \\ & 120 \end{aligned}$	$\begin{aligned} & 64 \\ & 73 \\ & 73 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 34.3 \\ & 37.6 \\ & 38.7 \end{aligned}$	45	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	2070	510
100GDL72－20 $\times 2$	$\begin{aligned} & 54 \\ & 72 \\ & 90 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 25 \end{aligned}$	$\begin{gathered} 49.4 \\ 40 \\ 31.6 \end{gathered}$	$\begin{aligned} & 71 \\ & 73 \\ & 68 \end{aligned}$	2900	$\begin{array}{r} 10.3 \\ 10.9 \\ 11.4 \\ \hline \end{array}$	15	$\begin{aligned} & 3.1 \\ & 3.5 \\ & 3.8 \end{aligned}$	1127	245
100GDL72－20 $\times 3$	$\begin{aligned} & 54 \\ & 72 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 74 \\ & 60 \\ & 47 \end{aligned}$	$\begin{aligned} & 71 \\ & 73 \\ & 68 \end{aligned}$	2900	$\begin{aligned} & 15.40 \\ & 16.37 \\ & 17.08 \end{aligned}$	18.5	$\begin{aligned} & 3.1 \\ & 3.5 \\ & 3.8 \end{aligned}$	1232	275
100GDL72－20 $\times 4$	$\begin{aligned} & 54 \\ & 72 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 99 \\ & 80 \\ & 63 \end{aligned}$	$\begin{aligned} & 71 \\ & 73 \\ & 68 \end{aligned}$	2900	$\begin{aligned} & 20.60 \\ & 21.80 \\ & 22.80 \\ & \hline \end{aligned}$	30	$\begin{aligned} & 3.1 \\ & 3.5 \\ & 3.8 \end{aligned}$	1467	390
$100 \mathrm{GDL} 72-20 \times 5$	$\begin{aligned} & 54 \\ & 72 \\ & 90 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 25 \end{aligned}$	$\begin{gathered} 124 \\ 100 \\ 79 \end{gathered}$	$\begin{aligned} & 71 \\ & 73 \\ & 68 \end{aligned}$	2900	$\begin{aligned} & 25.70 \\ & 27.30 \\ & 28.50 \\ & \hline \end{aligned}$	30	$\begin{aligned} & 3.1 \\ & 3.5 \\ & 3.8 \end{aligned}$	1552	380
$100 \mathrm{GDL} 72-20 \times 6$	$\begin{aligned} & 54 \\ & 72 \\ & 90 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 25 \end{aligned}$	$\begin{gathered} 148 \\ 120 \\ 95 \end{gathered}$	$\begin{aligned} & 71 \\ & 73 \\ & 68 \end{aligned}$	2900	$\begin{aligned} & 30.80 \\ & 32.70 \\ & 34.20 \end{aligned}$	37	$\begin{aligned} & 3.1 \\ & 3.5 \\ & 3.8 \end{aligned}$	1637	360
$100 \mathrm{GDL} 72-20 \times 7$	$\begin{aligned} & 51 \\ & 72 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 173 \\ & 140 \\ & 110 \\ & \hline \end{aligned}$	$\begin{aligned} & 71 \\ & 73 \\ & 68 \\ & \hline \end{aligned}$	2900	$\begin{aligned} & 36.00 \\ & 39.00 \\ & 40.70 \end{aligned}$	45	$\begin{aligned} & 3.1 \\ & 3.5 \\ & 3.8 \\ & \hline \end{aligned}$	1762	480
$100 \mathrm{GDL72-20} \mathrm{\times 8}$	$\begin{aligned} & 54 \\ & 72 \\ & 90 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 198 \\ & 160 \\ & 126 \end{aligned}$	$\begin{aligned} & 71 \\ & 73 \\ & 68 \end{aligned}$	2900	$\begin{aligned} & 41.20 \\ & 43.71 \\ & 45.60 \\ & \hline \end{aligned}$	55	$\begin{aligned} & 3.1 \\ & 3.5 \\ & 3.8 \end{aligned}$	1957	570
100GDL72－20 $\times 9$	$\begin{aligned} & \hline 54 \\ & 72 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 220 \\ & 180 \\ & 150 \end{aligned}$	$\begin{aligned} & 71 \\ & 73 \\ & 68 \end{aligned}$	2900	$\begin{aligned} & 52.92 \\ & 61.25 \\ & 64.08 \\ & \hline \end{aligned}$	75	$\begin{aligned} & 3.1 \\ & 3.5 \\ & 3.8 \\ & \hline \end{aligned}$	2012	750

GDL型㫤性能参数

型 号	流嗨		扬䅞 （m）	数茯 （\％）	转速 （r／min）	功桇		必霊汽他余 褔 （NPSH）（m）	高度 （mm）	重量 （kg）
	（ $\mathrm{m}^{3} / \mathrm{h}$ ）	（L／s）				䡒功空（kw）	中和功皐（m）			
100GDL100－20 $\times 2$	$\begin{aligned} & 70 \\ & 100 \\ & 120 \end{aligned}$	$\begin{aligned} & 19.4 \\ & 27.7 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 46 \\ & 40 \\ & 34 \end{aligned}$	$\begin{aligned} & 65 \\ & 74 \\ & 73 \end{aligned}$	2900	$\begin{aligned} & 13.5 \\ & 14.7 \\ & 15.2 \end{aligned}$	18.5	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	1345	248
100GDL100－20 $\times 3$	$\begin{aligned} & 70 \\ & 100 \\ & 120 \end{aligned}$	$\begin{aligned} & 19.4 \\ & 27.7 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 69 \\ & 60 \\ & 51 \end{aligned}$	$\begin{aligned} & 65 \\ & 74 \\ & 73 \end{aligned}$	2900	$\begin{aligned} & 20.2 \\ & 22.1 \\ & 22.8 \end{aligned}$	30	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	1598	360
100GDL100－20 $\times 4$	$\begin{aligned} & 70 \\ & 100 \\ & 120 \end{aligned}$	$\begin{aligned} & 19.4 \\ & 27.7 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 92 \\ & 80 \\ & 68 \end{aligned}$	$\begin{aligned} & 65 \\ & 74 \\ & 73 \end{aligned}$	2900	$\begin{aligned} & 27.0 \\ & 29.5 \\ & 30.4 \end{aligned}$	37	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	1715	390
100GDL100－20 $\times 5$	$\begin{aligned} & 70 \\ & 100 \\ & 120 \end{aligned}$	$\begin{aligned} & 19.4 \\ & 27.7 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 115 \\ & 100 \\ & 85 \end{aligned}$	$\begin{aligned} & 65 \\ & 74 \\ & 73 \end{aligned}$	2900	$\begin{aligned} & 33.7 \\ & 36.8 \\ & 38.1 \end{aligned}$	45	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	1959	470
100GDL100－20 $\times 6$	$\begin{gathered} 70 \\ 100 \\ 120 \end{gathered}$	$\begin{aligned} & 19.4 \\ & 27.7 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 138 \\ & 120 \\ & 102 \end{aligned}$	$\begin{aligned} & 65 \\ & 74 \\ & 73 \end{aligned}$	2900	$\begin{aligned} & 40.5 \\ & 44.2 \\ & 45.7 \end{aligned}$	55	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	2106	540
100GDL100－20 $\times 7$	$\begin{aligned} & 70 \\ & 100 \\ & 120 \end{aligned}$	$\begin{aligned} & 19.4 \\ & 27.7 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 161 \\ & 140 \\ & 119 \end{aligned}$	$\begin{aligned} & 65 \\ & 74 \\ & 73 \end{aligned}$	2900	$\begin{aligned} & 47.2 \\ & 51.5 \\ & 53.3 \end{aligned}$	75	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	2291	680
100GDL $100-20 \times 8$	$\begin{aligned} & 70 \\ & 100 \\ & 120 \end{aligned}$	$\begin{aligned} & 19.4 \\ & 27.7 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 181 \\ & 160 \\ & 136 \end{aligned}$	$\begin{aligned} & 65 \\ & 74 \\ & 73 \end{aligned}$	2900	$\begin{aligned} & 54.0 \\ & 58.9 \\ & 60.9 \end{aligned}$	75	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	2408	730
100GDL100－20 $\times 9$	$\begin{gathered} 70 \\ 100 \\ 120 \end{gathered}$	$\begin{aligned} & 19.4 \\ & 27.7 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 207 \\ & 180 \\ & 153 \end{aligned}$	$\begin{aligned} & 65 \\ & 74 \\ & 73 \end{aligned}$	2900	$\begin{aligned} & 60.7 \\ & 66.3 \\ & 68.5 \end{aligned}$	75	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	2575	740
100GDL $100-20 \times 10$	$\begin{aligned} & 70 \\ & 100 \\ & 120 \end{aligned}$	$\begin{aligned} & 19.4 \\ & 27.7 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 230 \\ & 200 \\ & 170 \end{aligned}$	$\begin{aligned} & 65 \\ & 74 \\ & 73 \end{aligned}$	2900	$\begin{aligned} & 67.5 \\ & 73.6 \\ & 76.1 \end{aligned}$	90	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	2692	790
125GDL100－20×2	$\begin{aligned} & 70 \\ & 100 \\ & 120 \end{aligned}$	$\begin{aligned} & 19.4 \\ & 27.7 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 46 \\ & 40 \\ & 34 \end{aligned}$	$\begin{aligned} & 65 \\ & 74 \\ & 73 \end{aligned}$	2900	$\begin{aligned} & 13.5 \\ & 14.7 \\ & 15.2 \end{aligned}$	18.5	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	1185	265
125GDL100－20×3	$\begin{aligned} & 70 \\ & 100 \\ & 120 \end{aligned}$	$\begin{aligned} & 19.4 \\ & 27.7 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 69 \\ & 60 \\ & 51 \end{aligned}$	$\begin{aligned} & 65 \\ & 74 \\ & 73 \end{aligned}$	2900	$\begin{aligned} & 20.2 \\ & 22.1 \\ & 22.8 \end{aligned}$	30	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	1315	390
125GDL100－20 $\times 4$	$\begin{aligned} & 70 \\ & 100 \\ & 120 \end{aligned}$	$\begin{aligned} & 19.4 \\ & 27.7 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 92 \\ & 80 \\ & 68 \end{aligned}$	$\begin{aligned} & 65 \\ & 74 \\ & 73 \end{aligned}$	2900	$\begin{aligned} & 27.0 \\ & 29.5 \\ & 30.4 \end{aligned}$	37	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	1410	410
125GDL100－20 $\times 5$	$\begin{aligned} & 70 \\ & 100 \\ & 120 \end{aligned}$	$\begin{aligned} & 19.4 \\ & 27.7 \\ & 33.3 \end{aligned}$	$\begin{gathered} 115 \\ 100 \\ 85 \end{gathered}$	$\begin{aligned} & 65 \\ & 74 \\ & 73 \end{aligned}$	2900	$\begin{aligned} & 33.7 \\ & 36.8 \\ & 38.1 \end{aligned}$	45	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	1585	470
125GDL100－20 $\times 6$	$\begin{aligned} & 70 \\ & 100 \\ & 120 \end{aligned}$	$\begin{aligned} & 19.4 \\ & 27.7 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 138 \\ & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & 65 \\ & 74 \\ & 73 \end{aligned}$	2900	$\begin{aligned} & 40.5 \\ & 44.2 \\ & 45.7 \end{aligned}$	55	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	1865	520
125GDL100－20 $\times 7$	$\begin{aligned} & 70 \\ & 100 \\ & 120 \end{aligned}$	$\begin{aligned} & 19.4 \\ & 27.7 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 161 \\ & 140 \\ & 119 \end{aligned}$	$\begin{aligned} & 65 \\ & 74 \\ & 73 \end{aligned}$	2900	$\begin{aligned} & 47.2 \\ & 51.5 \\ & 53.3 \end{aligned}$	75	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	1960	740
125GDL100－20 $\times 8$	$\begin{aligned} & 70 \\ & 100 \\ & 120 \end{aligned}$	$\begin{aligned} & 19.4 \\ & 27.7 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 181 \\ & 160 \\ & 136 \end{aligned}$	$\begin{aligned} & 65 \\ & 74 \\ & 73 \end{aligned}$	2900	$\begin{aligned} & 54.0 \\ & 58.9 \\ & 60.9 \end{aligned}$	75	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	2055	750
125GDL100－20 $\times 9$	$\begin{aligned} & 70 \\ & 100 \\ & 120 \end{aligned}$	$\begin{aligned} & 19.4 \\ & 27.7 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 207 \\ & 180 \\ & 153 \end{aligned}$	$\begin{aligned} & 65 \\ & 74 \\ & 73 \end{aligned}$	2900	$\begin{aligned} & 60.7 \\ & 66.3 \\ & 68.5 \end{aligned}$	75	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	2225	760
125GDL $100-20 \times 10$	$\begin{aligned} & 70 \\ & 100 \\ & 120 \end{aligned}$	$\begin{aligned} & 19.4 \\ & 27.7 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 230 \\ & 200 \\ & 170 \end{aligned}$	$\begin{aligned} & 65 \\ & 74 \\ & 73 \end{aligned}$	2900	$\begin{aligned} & 67.5 \\ & 73.6 \\ & 76.1 \end{aligned}$	90	$\begin{aligned} & 4.2 \\ & 4.5 \\ & 4.7 \end{aligned}$	2370	810

GDL型泉性能参数

	流㫫		扬程 （m）	效挽 （\％）	转速 （ $\mathrm{r} / \mathrm{min}$ ）	功产		必霊汽納会 点 （NPSH）r（m）	高度 （mm）	重量 （kg）
	$\left(\mathrm{m}^{3} / \mathrm{h}\right)$	（L／s）				轱功梓（kW）	电机旸率（1w）			
150GDL $160-20 \times 2$	$\begin{aligned} & 112 \\ & 160 \\ & 192 \end{aligned}$	$\begin{aligned} & 31.1 \\ & 44.4 \\ & 53.3 \end{aligned}$	46 40 34	$\begin{aligned} & 69 \\ & 78 \\ & 77 \end{aligned}$	2900	$\begin{aligned} & 20.3 \\ & 22.3 \\ & 23.1 \end{aligned}$	30	$\begin{aligned} & 4.4 \\ & 4.5 \\ & 4.7 \end{aligned}$	1325	384
150GDL $160-20 \times 3$	$\begin{aligned} & 112 \\ & 160 \\ & 192 \end{aligned}$	$\begin{aligned} & 31.1 \\ & 44.4 \\ & 53.3 \end{aligned}$	$\begin{aligned} & 69 \\ & 60 \\ & 51 \end{aligned}$	$\begin{aligned} & 69 \\ & 78 \\ & 77 \end{aligned}$	2900	$\begin{aligned} & 30.5 \\ & 33.5 \\ & 34.6 \end{aligned}$	37	$\begin{aligned} & 4.4 \\ & 4.5 \\ & 4.7 \end{aligned}$	1420	416
150GDL160－20 $\times 4$	$\begin{aligned} & 112 \\ & 160 \\ & 192 \end{aligned}$	$\begin{aligned} & 31.1 \\ & 44.4 \\ & 53.3 \end{aligned}$	$\begin{aligned} & 92 \\ & 80 \\ & 68 \end{aligned}$	$\begin{aligned} & 69 \\ & 78 \\ & 77 \end{aligned}$	2900	$\begin{aligned} & 40.6 \\ & 44.7 \\ & 46.2 \end{aligned}$	55	$\begin{aligned} & 4.4 \\ & 4.5 \\ & 4.7 \end{aligned}$	1705	577
150GDL160－20 $\times 5$	$\begin{aligned} & 112 \\ & 160 \\ & 192 \end{aligned}$	$\begin{aligned} & 31.1 \\ & 44.4 \\ & 53.3 \end{aligned}$	$\begin{aligned} & 115 \\ & 100 \\ & 85 \end{aligned}$	$\begin{aligned} & 69 \\ & 78 \\ & 77 \end{aligned}$	2900	$\begin{aligned} & 50.9 \\ & 55.9 \\ & 57.8 \end{aligned}$	75	$\begin{aligned} & 4.4 \\ & 4.5 \\ & 4.7 \end{aligned}$	1875	736
150GDL160－20 $\times 6$	$\begin{aligned} & 112 \\ & 160 \\ & 192 \end{aligned}$	$\begin{aligned} & 31.1 \\ & 44.4 \\ & 53.3 \end{aligned}$	$\begin{aligned} & 138 \\ & 120 \\ & 102 \end{aligned}$	$\begin{aligned} & 69 \\ & 78 \\ & 77 \end{aligned}$	2900	$\begin{aligned} & 61.0 \\ & 67.1 \\ & 69.3 \end{aligned}$	75	$\begin{aligned} & 4.4 \\ & 4.5 \\ & 4.7 \end{aligned}$	1970	703
150GDL160－20×7	$\begin{aligned} & 112 \\ & 160 \\ & 192 \end{aligned}$	$\begin{aligned} & 31.1 \\ & 44.4 \\ & 53.3 \end{aligned}$	$\begin{aligned} & 161 \\ & 140 \\ & 119 \end{aligned}$	$\begin{aligned} & 69 \\ & 78 \\ & 77 \end{aligned}$	2900	$\begin{aligned} & 71.2 \\ & 78.3 \\ & 80.9 \end{aligned}$	90	$\begin{aligned} & 4.4 \\ & 4.5 \\ & 4.7 \end{aligned}$	2115	798
150GDL160－20 $\times 8$	$\begin{aligned} & 112 \\ & 160 \\ & 192 \end{aligned}$	$\begin{aligned} & 31.1 \\ & 44.4 \\ & 53.3 \end{aligned}$	$\begin{aligned} & 184 \\ & 160 \\ & 136 \end{aligned}$	$\begin{aligned} & 69 \\ & 78 \\ & 77 \end{aligned}$	2900	$\begin{aligned} & 75.1 \\ & 80.4 \\ & 84.6 \end{aligned}$	90	$\begin{aligned} & 4.4 \\ & 4.5 \\ & 4.7 \end{aligned}$	2400	809
150GDL160－20×9	$\begin{aligned} & 112 \\ & 160 \\ & 192 \end{aligned}$	$\begin{aligned} & 31.1 \\ & 44.4 \\ & 53.3 \end{aligned}$	$\begin{aligned} & 207 \\ & 180 \\ & 153 \end{aligned}$	$\begin{aligned} & 69 \\ & 78 \\ & 77 \end{aligned}$	2900	$\begin{gathered} 91.6 \\ 10.6 \\ 104.0 \end{gathered}$	110	$\begin{aligned} & 4.4 \\ & 4.5 \\ & 4.7 \end{aligned}$	2495	1180
150GDL160－20 $\times 10$	$\begin{aligned} & 112 \\ & 160 \\ & 192 \end{aligned}$	$\begin{aligned} & 31.1 \\ & 44.4 \\ & 53.3 \end{aligned}$	$\begin{aligned} & 230 \\ & 200 \\ & 170 \end{aligned}$	$\begin{aligned} & 69 \\ & 78 \\ & 77 \end{aligned}$	2900	$\begin{aligned} & 101.7 \\ & 111.8 \\ & 115.5 \end{aligned}$	132	$\begin{aligned} & 4.4 \\ & 4.5 \\ & 4.7 \end{aligned}$	2670	1311
150GDL160－25 $\times 2$	$\begin{aligned} & 112 \\ & 160 \\ & 192 \end{aligned}$	$\begin{aligned} & 31.1 \\ & 44.4 \\ & 53.3 \end{aligned}$	$\begin{aligned} & 56 \\ & 50 \\ & 44 \end{aligned}$	$\begin{aligned} & 68 \\ & 77 \\ & 76 \end{aligned}$	2900	$\begin{aligned} & 25.10 \\ & 28.30 \\ & 30.30 \end{aligned}$	37	5	1330	394
150GDL160－25 $\times 3$	$\begin{aligned} & 112 \\ & 160 \\ & 192 \end{aligned}$	$\begin{aligned} & 31.1 \\ & 44.4 \\ & 53.3 \end{aligned}$	$\begin{aligned} & 84 \\ & 75 \\ & 66 \end{aligned}$	$\begin{aligned} & 68 \\ & 77 \\ & 76 \end{aligned}$	2900	$\begin{aligned} & 37.70 \\ & 42.40 \\ & 45.40 \end{aligned}$	55	5	1580	566
150GDL160－25 $\times 4$	$\begin{aligned} & 112 \\ & 160 \\ & 192 \end{aligned}$	$\begin{aligned} & 31.1 \\ & 44.4 \\ & 53.3 \end{aligned}$	$\begin{gathered} 112 \\ 100 \\ 88 \end{gathered}$	$\begin{aligned} & 68 \\ & 77 \\ & 76 \end{aligned}$	2900	50.20 56.60 60.50	75	5	1745	747
150GDL160－25 $\times 5$	$\begin{aligned} & 112 \\ & 160 \\ & 192 \end{aligned}$	$\begin{aligned} & 31.1 \\ & 44.4 \\ & 53.3 \end{aligned}$	$\begin{aligned} & 140 \\ & 125 \\ & 110 \end{aligned}$	$\begin{aligned} & 68 \\ & 77 \\ & 76 \end{aligned}$	2900	$\begin{aligned} & 62.80 \\ & 70.70 \\ & 75.70 \end{aligned}$	90	5	1890	776
150GDL160－25 $\times 6$	$\begin{aligned} & 112 \\ & 160 \\ & 192 \end{aligned}$	$\begin{aligned} & 31.1 \\ & 44.4 \\ & 53.3 \end{aligned}$	$\begin{aligned} & 168 \\ & 150 \\ & 132 \end{aligned}$	$\begin{aligned} & 68 \\ & 77 \\ & 76 \end{aligned}$	2900	$\begin{aligned} & 75.40 \\ & 84.90 \\ & 89.20 \end{aligned}$	90	5	1985	743
150GDL160－25 $\times 7$	$\begin{aligned} & 112 \\ & 160 \\ & 192 \end{aligned}$	$\begin{aligned} & 31.1 \\ & 44.4 \\ & 53.3 \end{aligned}$	$\begin{aligned} & 196 \\ & 175 \\ & 154 \end{aligned}$	$\begin{aligned} & 68 \\ & 77 \\ & 76 \end{aligned}$	2900	$\begin{gathered} 87.90 \\ 99.00 \\ 106.00 \end{gathered}$	110	5	2240	1158
150GDL160－25 $\times 8$	$\begin{aligned} & 112 \\ & 160 \\ & 192 \end{aligned}$	$\begin{aligned} & 31.1 \\ & 44.4 \\ & 53.3 \end{aligned}$	$\begin{aligned} & 224 \\ & 200 \\ & 176 \end{aligned}$	$\begin{aligned} & 68 \\ & 77 \\ & 76 \end{aligned}$	2900	$\begin{aligned} & 100.50 \\ & 113.20 \\ & 121.10 \end{aligned}$	132	5	2455	1289

GDL型泵单级曲线图

GDL型泵外形及安装图

豖附件及其尺寸

联接板
隔振垫
一屋

隔振器

	联接板尺寸							陽振器尺寸						
	型득	D	h	B	B．	d．	d2	型乒	M	D	D．	H	h	n－d
25	1\＃	500	55	205	440	18	22	JG2－2	M16	\＄ 150	\＄ 130	65	9	4－ 88.5
40	2\＃	500	55	215	440	18	22	JG2－2	M16	\＄ 150	\＄ 130	65	9	4－\＄8．5
50	$3 \#$	600	55	235	540	18	22	JG2－2	M16	\＄ 150	\＄ 130	65	9	4－$\phi 8.5$
65	4\＃	600	55	235	540	18	22	JG2－2	M16	\＄ 150	\＄ 130	65	9	4－ 88.5
80	5\＃	700	55	300	640	18	22	JG3－2	M16	\＄200	\＄ 170	87	9	4－ \＄ 12.5
100	6\＃	700	55	300	640	18	22	JG3－2	M16	\＄200	\＄ 170	87	9	4－ \＄12．5
125	7\＃	800	55	360	740	22	22	JG4－2	M20	\＄290	\＄ 260	133	9	4－\＄ 12.5
150	8\＃	800	55	360	740	22	22	JG4－2	M20	\＄290	\＄260	133	9	4－ 12．5

泵基础图及其联接尺寸

直接联接

配联接板，隔振垫

配联接板，隔振器

寝回径																			
	H	A	B	E	F	d	H	A	Bi	E	F	d	H	A	Bi	E	F	D	d
25	200	150	205	500	550	80	200	150	440	750	800	60	200	60	440	750	800	130	8.5
40	200	150	215	500	550	80	200	150	440	750	800	60	200	60	440	750	800	130	8.5
50	250	200	235	550	600	80	250	200	540	850	900	60	250	60	540	850	900	130	8.5
65	250	200	235	550	600	80	250	200	540	850	900	60	250	60	540	850	900	130	8.5
80	300	250	300	600	650	100	300	250	640	950	1050	80	300	60	640	950	1050	170	12.5
100	300	250	300	600	650	100	300	250	640	950	1050	80	300	60	640	950	1050	170	12.5
125	300	250	360	650	700	100	300	250	740	1050	1150	80	300	80	740	1050	1150	260	12.5
150	300	250	360	650	700	100	300	250	740	1050	1150	80	300	80	740	1050	1150	260	12.5

安装说明

1，安装时管路重量不应承受在泵上，否则易损坏水泵；
2，泉与电机是整体结构，出广时已由厂家校正，所以安装时无需调整，因此安装时十分方便；
3．安装时必须打紧地脚螺栓，且每间隔一定时段应对泉进行检查防止其松动，以免水泉起动时发生剧烈振动而影响泵的性能；
4，安装水泉前应仔细检查泉流道内有无影响水泵运行的硬质物（如石块，铁砂等），以免水泵运行时损坏过流部件； 5，为了维修方便和使用安全，在泵的进出口管路上安装一只调节悯及在泵进出口附近安装一只压力表，对于高扬程泵，为防止水锤，还应在出口闸㳚前安装一只止回润，以应付突然断电等失去动力事故，从而确保水泉在最佳工况下运行，增长水泵的使用寿命；
6，泵用于有吸程场合，应装有底阀，并且进口管路不应有过多弯道，同时不得有漏水，漏气现象，以免影响水泵的吸入性能；
7，为不使杂质进入泉内而堵塞流道影响性能，应在踏进口前面安装过滤器；
8，安装管路前转动水泉的转子部件，应无磨擦声或卡死现象，否则应将泵拆开检查原因。

起动与停车

起动前准备

1．用手拨转联轴器，叶轮应无卡磨现象，转动灵活；2，打开进口闸门，打开排气沎使液体充满整个泵腔，然后关闭排气嘴；3，如输送热液体时，起动前应预热，升温速度为 $50^{\circ} \mathrm{C} / \mathrm{h}$ ，泵的预热是用所输送液体不断循环来达到，以使各部位受热均匀；4，应先用手盘动泉几圈以使润滑水进入机械密封端面；5，点动电机，确定转向是否正确。

起动与运行

1，全开进口阀门，关闭吐出管路阀门；2，接通电源，当泵达到正常转速后再逐渐打开吐出管路上的阀门，并调节到所需工况；3，注意观察仪表读数，确保水泉在额定电流范围内运行并检查电机轴承处温度 $\leqslant 75^{\circ} \mathrm{C}$ ，如果发现异常情况应及时处理。

停车

1，逐渐关闭吐出管路漍门，切断电源；2，关闭进口減门；3，如环境温度低于 $0^{\circ} \mathrm{C}$ ，应将泵内液体放尽，以免冻裂水泵；

踏的维护与保养

运行中的维护与保养

1，进水管路必须高度密封，不能漏水，漏气；
2，禁止泵在汽蚀状态下长期运行；
3，禁止泵在大流量工况运行时，电机超电流长期运行；
4，定时检查泵运行中的电机电流值，尽量使泉在设计工况范围内运行；
5，泵在运行中应有专人看管，以免发生意外；
6，泵每运行 500 小时应对轴承进行加油；
7，泵进行长期运行后，由于机械磨损，使机组噪声及振动增大时，应停车检查，必要时可更换易损零件及轴承，机组大修期一般为一年。

机械密封的维护与保养

1，机械密封润滑液应清洁无固体颗粒；2，严禁机械密封在干磨情况下工作；3，起动前应盘动泉（电机）几圈，以免突然起动造成机械密封断裂损坏。

易损件

滚动轴承

电机䣦率 （kw）	揇飛型号	中机功率 （kw）	轴承型号
0.75	6204	18.5	6309
1.1	6204	22	6311
1.5	6205	30	6312
2.2	6205	37	6312
3	6206	45	6313
4	6206	55	6314
5.5	6308	75	6314
7.5	6308	90	6314
11	6309	110	6317
15	6309	132	6137

机械密封

㤩型咢	机械滵封捯毕
25GDL	109－25
40GDL	109－25
50GDL	109－30
65GDL	109－30
80GDL	109－35
100GDL	109－35
125GDL	109－40
150GDL	109－40

故障原因及排除方法

故障现象	可能产生的原因	排除方法
1，水泵不出水	a，进出口裓门未打开，进出管路阻塞，叶轮流道阻塞 b，电机运行方向不对，电机铁相转速很慢 c，吸入管漏气 d，泉没灌满液体，泉腔内有空气 e，进口供水不足，吸程过高，底悯漏水 f，管路阻力过大，票选型不当	a，检查，云除阻塞物 b，调整电机转向，紧固电机接线 c．拧紧各密封面，排除空气 d．打开石上盖或打开排气阀，排尽空气 e，停机检查，调整（并网自来水管和带吸程使用易出现此现象） f．减少管路弯道，重新选泉
2，水泵流量不足	a，先按1，原因检查 b，管道，石泉流道或叶轮部分阻塞，水垢沉积，阀门开度不足 c，电压偏低 d，叶轮磨损	a，先按1，排除 b，去除阻塞物，重新调整阀门开度 c，稳压 d，更换叶轮
3，功率过大	a，超过额定流量使用 b，吸程过高 c，泉轴承磨损	a，调节流量，关小出口诫门 b，降低 c．更换轴承
4，杂音振动	a，管路支撑不稳 b，液体混有气体 c，产生汽蚀 d，轴承损坏 e，电机超载运行	a，稳固管路 b，提高吸入压力，排气 c，降低真空度 d，更换轴承 e，调整按5．
5，电机发热	a，流量过大，超载运行 b，局部摩擦 c，电机轴承损坏 d，电压不足	a，关小出口㳦门 b，检查排除 c，更换轴承 d，稳压
6，水泵漏水	a，机械密封磨损 b，泵体有砂孔或破裂 c，密封面不平整 d．安装螺栓松懈	a，更换 b，焊补或更换 c，修整 d，紧固

要采用生空纸涠婮

服务热线（Hotline）：
4000778809

上海超盾机械制造集团有限乤司
Shanghai Chaodun Machinery Manufacturing Group Co．．Ltd
地址：上海浦东新区惠南镇双店路518号
邮编： 201300
电话：021－66055320 66055360
传真：021－51686772
Http：／／www．cdungroup．com
E－mail：sales＠cdunchina．com

Hilti HIT-HY 200-R mortar for concrete

Ultimate performance hybrid mortar for heavy anchoring in concrete

Approvals / certificates

Description	Authority / Laboratory	No. / date of issue
European technical Assessment ${ }^{\text {a) }}$	DIBt, Berlin	ETA-12/0084 / 2017-07-28 (HY200 R)
European technical Assessment ${ }^{\text {a) }}$	DIBt, Berlin	ETA-12/0028 / 2017-05-30 (HY200 R)
Fire test report	IBMB, Brunswick	$3501 / 676 / 13$ / 2012-08-03

a) All data given in this section according to ETA-11/0493, issue 2017-07-28, ETA-12/0006, issue 2017-05-30, ETA-12/0084, issue 2017-07-28 and ETA-12/0028, issue 2017-05-30

Recommended general notes

*The below clauses based on Hilti product qualifications are for references only. Selection of clauses by the engineer shall be based on the specific application needs. Please contact Hilti's technical team for further details.

- Fast cure adhesive mortar for anchor fastenings in uncracked and cracked concrete
- HIT-Z application: Adhesive anchors system shall be bonded expansion anchor type to cracked and uncracked concrete.
- HIT-Z application: Anchor shall be approved for use in diamond cored holes.
- Anchor shall be approved for overhead installation.
- For overhead or deep embedment depth ($>250 \mathrm{~mm}$) installation, specialized accessories shall be applied to ensure drill hole is fully grouted with no voids.
- Borehole drilled and cleaned in one step with Hilti hollow drill bit is recommended to reduce installation error.
- Anchors shall obtain the European Technical Assessment (ETA) report.
- The anchor bolt design shall be done either according to "ETAG001 Annex C Design Method" issued by EOTA or "Guides on design of post-installed anchor bolt systems in Hong Kong" issued by HKISC.
- Anchors shall be tested in accordance to either ETAG-001 Annex A or ACI 355.2 by accredited laboratories under HOKLAS Mutual Recognition Arrangement (MRA) Partners.
- Anchor to be approved by WRAS and NSF for use in contact with drinking water.

Static and quasi-static resistance (for a single anchor)

All data in this section applies to:

- Correct setting (See setting instruction)
- No edge distance and spacing influence
- Steel failure
- Minimum base material thickness
- One typical embedment depth, as specified in the table
- One anchor material, as specified in the tables
- Concrete C $20 / 25, \mathrm{f}_{\mathrm{ck}, \text { cube }}=25 \mathrm{~N} / \mathrm{mm}^{2}$
- Temperature range I (min. base material temp. $-40^{\circ} \mathrm{C}$, max. long/short term base material temp.: $+24^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$)

For hammer drilled holes, hammer drilled holes with Hilti hollow drill bit:

Anchorage depth ${ }^{\text {a) }}$

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
HIT-V										
Embedment depth	$\mathrm{hef}_{\text {ef }}=\mathrm{h}_{\text {nom, min }}$	[mm]	80	90	110	125	170	210	240	270
Base material thickness		[mm]	110	120	140	161	134	266	300	340
HIS-N										
Embedment depth	$\mathrm{hef}_{\text {ef }}=\mathrm{h}_{\text {nom,min }}$	[mm]	90	110	125	170	205	-	-	-
Base material thickness		[mm]	120	150	170	230	270	-	-	-
HIT-Z										
Effective anchorage depth ${ }^{\text {b) }}$	$\mathrm{hef}_{\text {ef }}=l_{\text {Helix }}$	[mm]	50	60	60	96	100	-	-	-
Effective embedment depth ${ }^{\text {c }}$	$\mathrm{hef}_{\text {ef }}=\mathrm{h}_{\text {nom, min }}$	[mm]	70	90	110	145	180	-	-	-
Base material thickness		[mm]	130	150	170	245	280	-	-	-

a) The allowed range of embedment depth is shown in the setting details
b) For combined pull-out and concrete cone failure
c) For concrete cone failure

Characteristic resistance

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked concrete										
Tension N_{Rk}	HIT-V 5.8	[kN]	18,0	29,0	42,0	70,6	111,9	153,7	187,8	224,0
	HIS-N 8.8		25,0	46,0	67,0	111,9	116,0	-	-	-
	HIT-Z ${ }^{\text {a }}$		24,0	38,0	54,3	88,2	122,0	-	-	-
Shear V_{Rk}	HIT-V 5.8	[kN]	9,0	15,0	21,0	39,0	61,0	88,0	115,0	140,0
	HIS-N 8.8		13,0	23,0	34,0	63,0	58,0	-	-	-
	HIT-Z ${ }^{\text {a }}$		12,0	19,0	27,0	48,0	73,0	-	-	-
Cracked concrete										
Tension N_{Rk}	HIT-V 5.8	[kN]	15,1	21,2	35,2	50,3	79,8	109,6	133,9	159,7
	HIS-N 8.8		24,7	39,9	50,3	79,8	105,7	-	-	-
	HIT-Z ${ }^{\text {a }}$		21,1	30,7	41,5	62,9	86,9	-	-	-
Shear V_{Rk}	HIT-V 5.8	[kN]	9,0	15,0	21,0	39,0	61,0	88,0	115,0	140,0
	HIS-N 8.8		13,0	23,0	34,0	63,0	58,0	-	-	-
	HIT-Z ${ }^{\text {a }}$		12,0	19,0	27,0	48,0	73,0	-	-	-

a) Hilti anchor rod HIT-Z-F: M16 and M20

Design resistance

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked concrete										
Tension $\mathrm{N}_{\text {Rd }}$	HIT-V 5.8	[kN]	12,0	19,3	28,0	47,1	74,6	102,5	125,2	149,4
	HIS-N 8.8		16,7	30,7	44,7	74,6	77,3	-	-	-
	HIT-Z ${ }^{\text {a }}$		16,0	25,3	36,2	58,8	81,3	-	-	-
Shear $\mathrm{V}_{\text {Rd }}$	HIT-V 5.8	[kN]	7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,0
	HIS-N 8.8		10,4	18,4	27,2	50,4	46,4	-	-	-
	HIT-Z ${ }^{\text {a }}$		9,6	15,2	21,6	38,4	58,4	-	-	-
Cracked concrete										
Tension N_{Rd}	HIT-V 5.8	[kN]	10,1	14,1	23,5	33,5	53,2	73,0	89,2	106,5
	HIS-N 8.8		16,5	26,6	33,5	53,2	70,4	-	-	-
	HIT-Z ${ }^{\text {a }}$		14,1	20,5	27,7	41,9	58,0	-	-	-
Shear $\mathrm{V}_{\text {Rd }}$	HIT-V 5.8	[kN]	7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,0
	HIS-N 8.8		10,4	18,4	27,2	50,4	46,4	-	-	-
	HIT-Z ${ }^{\text {a }}$		9,6	15,2	21,6	38,4	58,4	-	-	-

[^0]Recommended loads ${ }^{\text {b) }}$

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked concrete										
Tension $\mathrm{N}_{\text {Rec }}$	HIT-V 5.8	[kN]	6,0	9,7	14,0	23,5	37,3	51,2	62,6	74,7
	HIS-N 8.8		8,3	15,3	22,3	37,3	38,7	-	-	-
	HIT-Z ${ }^{\text {a }}$		8,0	12,7	18,1	29,4	40,7	-	-	-
Shear $\mathrm{V}_{\text {Rec }}$	HIT-V 5.8	[kN]	3,0	5,0	7,0	13,0	20,3	29,3	38,3	46,7
	HIS-N 8.8		4,3	7,7	11,3	21,0	19,3	-	-	-
	HIT-Z ${ }^{\text {a }}$		4,0	6,3	9,0	16,0	24,3	-	-	-
Cracked concrete										
Tension $\mathrm{N}_{\text {Rec }}$	HIT-V 5.8	[kN]	5,0	7,1	11,7	16,8	26,6	36,5	44,6	53,2
	HIS-N 8.8		8,2	13,3	16,8	26,6	35,2	-	-	-
	HIT-Z ${ }^{\text {a }}$		7,0	10,2	13,8	21,0	29,0	-	-	-
Shear $\mathrm{V}_{\text {Rec }}$	HIT-V 5.8	[kN]	3,0	5,0	7,0	13,0	20,3	29,3	38,3	46,7
	HIS-N 8.8		4,3	7,7	11,3	21,0	19,3	-	-	-
	HIT-Z ${ }^{\text {a }}$		4,0	6,3	9,0	16,0	24,3	-	-	-

a) Hilti anchor rod HIT-Z-F: M16 and M20
b) With overall partial safety factor for action $\gamma=3.0$. The recommended loads vary according to the safety factor requirement from national regulations

Materials

Materials properties for HIT-V

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal tensile strength $f_{u k}$	HIT-V	[$\left.\mathrm{N} / \mathrm{mm}^{2}\right]$	500	500	500	500	500	500	500	500
	HIT-V AM 8.		800	800	800	800	800	800	800	800
	HIT-V-		700	700	700	700	700	700	500	500
	HIT-V-		800	800	800	800	800	700	700	700
Yield strength f_{yk}	HIT-V	[$\mathrm{N} / \mathrm{mm}^{2}$]	400	400	400	400	400	400	400	400
	HIT-V AM 8.8		640	640	640	640	640	640	640	640
	HIT-V-		450	450	450	450	450	450	210	210
	HIT-V-		640	640	640	640	640	400	400	400
Stressed cross-section $\mathrm{A}_{\text {s }}$	HIT-V	[mm^{2}]	36,6	58,0	84,3	157	245	353	459	561
Moment of resistance W	HIT-V	[mm^{3}]	31,2	62,3	109	277	541	935	1387	1874

Mechanical properties for HIS-N

Anchor size			M8	M10	M12	M16	M20
Nominal tensile strength $f_{\text {uk }}$	HIS-N	$\left[\mathrm{N} / \mathrm{mm}^{2}\right]$	490	490	460	460	460
	Screw 8.8		800	800	800	800	800
	HIS-RN		700	700	700	700	700
	Screw A4-70		700	700	700	700	700
Yield strength f_{yk}	HIS-N	[$\left.\mathrm{N} / \mathrm{mm}^{2}\right]$	410	410	375	375	375
	Screw 8.8		640	640	640	640	640
	HIS-RN		350	350	350	350	350
	Screw A4-70		450	450	450	450	450
Stressed cross-section A_{s}	HIS-(R)N	[mm^{2}]	51,5	108,0	169,1	256,1	237,6
	Screw		36,6	58	84,3	157	245
Moment of resistance W	HIS-(R)N	$\left[\mathrm{mm}^{3}\right]$	145	430	840	1595	1543
	Screw		31,2	62,3	109	277	541

Mechanical properties for HIT-Z

Anchor size			M8	M10	M12	M16	M20
Nominal tensile strength $f_{u k}$	HIT-Z(-F) ${ }^{\text {a }}$	$\left[\mathrm{N} / \mathrm{mm}^{2}\right]$	650	650	650	610	595
	HIT-Z-R		650	650	650	610	595
Yield strength f_{yk}	HIT-Z(-F) ${ }^{\text {a) }}$	[$\left.\mathrm{N} / \mathrm{mm}^{2}\right]$	520	520	520	490	480
	HIT-Z-R		520	520	520	490	480
Stressed crosssection of thread A_{s}	$\begin{aligned} & \text { HIT-Z(-F) a) } \\ & \text { HIT-Z-R } \end{aligned}$	[mm^{2}]	36,6	58,0	84,3	157	245
Moment of resistance W	$\begin{aligned} & \text { HIT-Z(-F) a) } \\ & \text { HIT-Z-R } \end{aligned}$	[mm^{3}]	31,9	62,5	109,7	278	542

a) Hilti anchor rod HIT-Z-F: M16 and M20

Material quality for HIT-V

Part	Material
Zinc coated steel	
Threaded rod, HIT-V 5.8 (F)	Strength class 5.8; Elongation at fracture A5 > 8\% ductile Electroplated zinc coated $\geq 5 \mu \mathrm{~m}$; (F) hot dip galvanized $\geq 45 \mu \mathrm{~m}$
Threaded rod, HIT-V 8.8 (F)	Strength class 8.8; Elongation at fracture A5 > 12\% ductile Electroplated zinc coated $\geq 5 \mu \mathrm{~m}$; (F) hot dip galvanized $\geq 45 \mu \mathrm{~m}$
Hilti Meter rod, AM 8.8 (HDG)	Strength class 8.8; Elongation at fracture A5 > 12\% ductile Electroplated zinc coated $\geq 5 \mu \mathrm{~m}$ (HDG) hot dip galvanized $\geq 45 \mu \mathrm{~m}$
Washer	Electroplated zinc coated $\geq 5 \mu \mathrm{~m}$, hot dip galvanized $\geq 45 \mu \mathrm{~m}$
Nut	Strength class of nut adapted to strength class of threaded rod. Electroplated zinc coated $\geq 5 \mu \mathrm{~m}$, hot dip galvanized $\geq 45 \mu \mathrm{~m}$
Hilti Filling set (F)	Filling washer: Electroplated zinc coated $\geq 5 \mu \mathrm{~m} /$ (F) Hot dip galvanized $\geq 45 \mu \mathrm{~m}$
	Spherical washer: Electroplated zinc coated $\geq 5 \mu \mathrm{~m} /$ (F) Hot dip galvanized $\geq 45 \mu \mathrm{~m}$
	Lock nut: Electroplated zinc coated $\geq 5 \mu \mathrm{~m} /$ (F) Hot dip galvanized $\geq 45 \mu \mathrm{~m}$
Stainless Steel	
Threaded rod, HIT-V-R	Strength class 70 for \leq M24 and strength class 50 for $>$ M24; Elongation at fracture A5 > 8\% ductile Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362
Washer	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
Nut	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
High corrosion resistant steel	
Threaded rod, HIT-V-HCR	Strength class 80 for \leq M20 and class 70 for $>$ M20, Elongation at fracture A5 > 8\% ductile High corrosion resistance steel 1.4529; 1.4565;
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014
Nut	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014

Material quality for HIS-N

Part		Material
HIS-N	Int. threaded sleeve	Electroplated zinc coated $\geq 5 \mu \mathrm{~m}$
	Screw 8.8	Strength class 8.8, A5 > 8 \% Ductile; Steel galvanized $\geq 5 \mu \mathrm{~m}$
Int. threaded Hleeve	Stainless steel 1.4401,1.4571	
	Screw 70 70	Strength class 70, A5 > 8 \% Ductile; Stainless steel 1.4401; 1.4404, 1.4578; 1.4571; $1.4439 ; 1.4362$

Material quality for HIT-Z

Part	Material
Threaded rod HIT-Z	Elongation at fracture $>8 \%$ ductile; Electroplated zinc coated $\geq 5 \mu \mathrm{~m}$
Washer	Electroplated zinc coated $\geq 5 \mu \mathrm{~m}$
Nut	Strength class of nut adapted to strength class of anchor rod. Electroplated zinc coated $\geq 5 \mu \mathrm{~m}$
HIT-Z-F	Elongation at fracture $>8 \%$ ductile Multilayer coating, ZnNi-galvanized according to DIN 50979:2008-07
Washer	Multilayer coating, ZnNi-galvanized according to DIN 50979:2008-07
Nut	Multilayer coating, ZnNi-galvanized according to DIN 50979:2008-07
HIT-Z-R	Elongation at fracture > 8\% ductile; Stainless steel 1.4401, 1.4404 EN 10088-1:2014
Washer	Stainless steel A4 according to EN 10088-1:2014
Nut	Strength class of nut adapted to strength class of anchor rod. Stainless steel 1.4401, 1.4404 EN 10088-1:2014

Setting information

In service temperature range
Hilti HIT-HY 200 R injection mortar with anchor rod HIT-V / HIS-(R)N may be applied in the temperature ranges given below. An elevated base material temperature leads to a reduction of the design bond resistance.

Temperature in the base material

Temperature range	Base material temperature	Max. long term base material temperature	Max. short term base material temperature
Temperature range I	$-40^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$	$+24^{\circ} \mathrm{C}$	$+40^{\circ} \mathrm{C}$
Temperature range II	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	$+50^{\circ} \mathrm{C}$	$+80^{\circ} \mathrm{C}$
Temperature range III	$-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$	$+72^{\circ} \mathrm{C}$	$+120^{\circ} \mathrm{C}$

Max short term base material temperature

Short-term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Max long term base material temperature

Long-term elevated base material temperatures are roughly constant over significant periods of time.
Curing and working time

Temperature of the base material	HIT-HY 200-R	
	Maximum working time $\mathrm{t}_{\text {work }}$	Minimum curing time $\mathrm{t}_{\text {cure }}$
$-10^{\circ} \mathrm{C}>\mathrm{T}_{B M} \geq-5^{\circ} \mathrm{C}$	3 h	20 h
$-5^{\circ} \mathrm{C}>\mathrm{T}_{B M} \geq 0^{\circ} \mathrm{C}$	2 h	8 h
$0^{\circ} \mathrm{C}>\mathrm{T}_{B M} \geq 5^{\circ} \mathrm{C}$	1 h	4 h
$5^{\circ} \mathrm{C}>\mathrm{T}_{B M} \geq 10^{\circ} \mathrm{C}$	40 min	$2,5 \mathrm{~h}$
$10^{\circ} \mathrm{C}>\mathrm{T}_{B M} \geq 20^{\circ} \mathrm{C}$	15 min	$1,5 \mathrm{~h}$
$20^{\circ} \mathrm{C}>\mathrm{T}_{B M} \geq 30^{\circ} \mathrm{C}$	9 min	1 h
$30^{\circ} \mathrm{C}>\mathrm{T}_{B M} \geq 40^{\circ} \mathrm{C}$	6 min	1 h

Setting details for HIT-V

For spacing (edge distance) smaller than critical spacing (critical edge distance) the design loads have to be reduced.
a) $h_{\text {ef.min }} \leq h_{\text {ef }} \leq h_{\text {ef.max }}$ ($h_{\text {ef }}$ embedment depth)
b) Maximum recommended torque moment to avoid splitting failure during instalation with minimum spacing and edge distance
c) h : base material thickness ($h \geq h_{\text {min }}$)
d) The critical edge distance for concrete cone failure depends on the embedment depth $\mathrm{h}_{\text {ef }}$ and the design bond resistance. The simplified formula given in this table is on the save side

Setting details for HIS-N

Anchor size					M12	M16	M20
Nominal diameter of drill bit	d_{0}	[mm]	14	18	22	28	32
Diameter of element	d	[mm]	12,5	16,5	20,5	25,4	27,6
Effective anchorage and drill hole depth	$h_{\text {ef }}$	[mm]	90	110	125	170	205
Minimum base material thickness	$\mathrm{h}_{\text {min }}$	[mm]	120	150	170	230	270
Diameter of clearance hole in the fixture	d_{f}	[mm]	9	12	14	18	22
Thread engagement length; min - max	$\mathrm{h}_{\text {s }}$	[mm]	8-20	10-25	12-30	16-40	20-50
Minimum spacing	$\mathrm{S}_{\text {min }}$	[Nm]	60	75	90	115	130
Minimum edge distance	$\mathrm{C}_{\text {min }}$	[mm]	40	45	55	65	90
Critical spacing for splitting failure	$\mathrm{S}_{\text {cr,sp }}$	[mm]	$2 \mathrm{c}_{\mathrm{c}, \mathrm{sp}}$				
Critical edge distance for splitting failure ${ }^{\text {b) }}$	$\mathrm{C}_{\mathrm{cr}, \mathrm{sp}}$	[mm]	1,0 0 hef	for $\mathrm{h} / \mathrm{hef}_{\text {ef }} \geq 2,00$			
			4,6 $\mathbf{h e f}_{\text {ef }}-1,8 \mathbf{h}$ for $2,00>h / h_{\text {ef }}>1,3$,
			2,26 $\mathrm{h}_{\text {ef }}$	for $\mathrm{h} / \mathrm{hef}_{\text {ef }} \leq 1,3$		$1,0 \cdot h_{\text {e }}$	2,26. $\mathrm{Het}^{\text {er }}$
Critical spacing for concrete cone failure	$\mathrm{S}_{\mathrm{cr}, \mathrm{N}}$	[mm]	$2 \mathrm{c}_{\text {cr, }}$				
Critical edge distance for concrete cone failure ${ }^{\text {c }}$	$\mathrm{C}_{\mathrm{cr}, \mathrm{N}}$	[mm]	1,5 nef				
Max. torque moment ${ }^{\text {a }}$	$\mathrm{T}_{\text {max }}$	[Nm]	10	20	40	80	150

For spacing (edge distance) smaller than critical spacing (critical edge distance) the design loads have to be reduced.
a) Max. recommended torque moment to avoid splitting failure during Instalation with minimum spacing and edge distance
b) h : base material thickness ($h \geq h_{\text {min }}$)
c) The critical edge distance for concrete cone failure depends on the embedment depth $h_{\text {ef }}$ and the design bond resistance. The simplified formula given in this table is on the save side

Settings details HIT-Z, HIT-Z-F and HIT-Z-R

Anchor size			M8	M10	M12	M16	M20
Nominal diameter of drill bit	d_{0}	[mm]	10	12	14	18	22
Length of anchor	$\min 1$	[mm]	80	95	105	155	215
	max 1	[mm]	120	160	196	420	450
Nominal embedment depth range ${ }^{\text {a) }}$	$\mathrm{h}_{\text {nom, min }}$	[mm]	60	60	60	96	100
	$\mathrm{h}_{\text {nom, max }}$	[mm]	100	120	144	192	220
Borehole condition 1 Min. base material thickness	$\mathrm{h}_{\text {min }}$	[mm]	$\mathrm{h}_{\text {nom }}+60 \mathrm{~mm}$			$\mathrm{h}_{\text {nom }}+100 \mathrm{~mm}$	
Borehole condition 2 Min. base material thickness	$\mathrm{h}_{\text {min }}$	[mm]	$\begin{gathered} \mathrm{h}_{\text {nom }}+30 \mathrm{~mm} \\ \quad \geq 100 \mathrm{~mm} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{h}_{\text {nom }}+45 \mathrm{~mm} \\ \geq 45 \mathrm{~mm} \end{gathered}$	
Maximum depth of drill hole	h_{0}	[mm]	$\mathrm{h}-30 \mathrm{~mm}$			$\mathrm{h}-2 \mathrm{~d}_{0}$	
Pre-setting: Diameter of clearance hole in the fixture	d_{f}	[mm]	9	12	14	18	22
Through-setting: Diameter of clearance hole in the fixture	d_{f}	[mm]	11	14	16	20	24
Maximum fixture thickness	$\mathrm{t}_{\text {fix }}$	[mm]	48	87	120	303	326
Maximum fixture thickness with seismic filling set	$\mathrm{t}_{\text {fix }}$	[mm]	41	79	111	292	314
Installation torque moment ${ }^{\text {b) }}$	$\mathrm{T}_{\text {inst }}$	[Nm]	10	25	40	80	150
Critical spacing for splitting failure	$\mathrm{S}_{\text {cr,sp }}$	[mm]	$2 \mathrm{c}_{\mathrm{cr}, \mathrm{sp}}$				
Critical edge distance for splitting failure ${ }^{\text {c }}$	$\mathrm{C}_{\text {cr,sp }}$	[mm]	1,5 $\cdot \mathrm{h}_{\text {nom }}$		for $\mathrm{h} / \mathrm{h}_{\text {nom }} \geq 2,35$	$\begin{array}{r} h / h_{\text {nom }} \\ 2,35 \\ 1,35 \end{array}$	
			6,2 $\mathbf{h}_{\text {nom }}-2,0 h$ for $2,35>h / h_{\text {nom }}>1,35$				
			3,5	for $\mathrm{h} / \mathrm{h}_{\text {nom }} \leq 1,35$			1,5. $h_{\text {nom }} \quad 3,5 \cdot h_{\text {noen }}$
Critical spacing for concrete cone failure	$\mathrm{Sc}_{\mathrm{c}, \mathrm{N}}$	[mm]	$2 \mathrm{c}_{\mathrm{cr}, \mathrm{N}}$				
Critical edge distance concrete cone failure ${ }^{\text {d })}$	$\mathrm{Cc}_{\mathrm{cr}, \mathrm{N}}$	[mm]	$1,5 \mathrm{~h}_{\text {nom }}$				

For spacing (edge distance) smaller than critical spacing (critical edge distance) the design loads have to be reduced.
a) $h_{\text {nom,min }} \leq h_{\text {nom }} \leq h_{\text {nom,max }}$ ($h_{\text {nom }}$: embedment depth)
b) Recommended torque moment to avoid splitting failure during instalation with minimum spacing and edge distance
c) h : base material thickness ($\mathrm{h} \geq \mathrm{h}_{\text {min }}$)
d) The critical edge distance for concrete cone failure depends on the embedment depth $h_{\text {ef }}$ and the design bond resistance. The simplified formula given in this table is on the save side

Pre-setting:
Install anchor before positioning fixture

Drill hole condition $1 \rightarrow$ non-cleaned borehole
Drill hole condition $2 \rightarrow$ drilling dust is completely removed

Through-setting:

Install anchor through
positioned fixture

Annular gap filled with
Hilti HIT-HY 200-A

Anchor dimension for HIT-Z

Anchor size			M8	M10	M12	M16	M20
Length of anchor	$\min \boldsymbol{\ell}$	$[\mathrm{mm}]$	80	95	105	155	215
	$\max \boldsymbol{\ell}$	$[\mathrm{~mm}]$	120	160	196	420	450
Helix length	$\boldsymbol{\ell}_{\text {Helix }}$	$[\mathrm{mm}]$	50	60	60	96	100

Minimum edge distance and spacing for HIT-Z

For the calculation of minimum spacing and minimum edge distance of anchors in combination with different embedment depth and thickness of concrete member the following equation shall be fulfilled: $A_{i, \text { req }}<A_{i, \text { cal }}$

Required interaction area $\mathrm{A}_{\mathrm{i}, \text { cal }}$ for HIT-Z

Anchor size		M8	M10	M12	M16	M20
Cracked concrete	$\left[\mathrm{mm}^{2}\right]$	19200	40800	58800	94700	148000
Non-cracked concrete	$\left[\mathrm{mm}^{2}\right]$	22200	57400	80800	128000	198000

Effective area A $_{i, \text { ef }}$ of HIT-Z

| Member thickness $h \geq h_{n o m}+1,5 \cdot c$ |
| ---: | :--- |

Best case minimum edge distance and spacing with required member thickness and embedment depth

Anchor size			M8	M10	M12	M16	M20
Cracked concrete							
Member thickness	$\mathrm{h} \geq$	[mm]	140	200	240	300	370
Embedment depth	$\mathrm{h}_{\text {nom }} \geq$	[mm]	80	120	150	200	220
Minimum spacing	$\mathrm{s}_{\text {min }}$	[mm]	40	50	60	80	100
Corresponding edge distance	$c \geq$	[mm]	40	55	65	80	100
Minimum edge distance	$\mathrm{c}_{\text {min }}=$	[mm]	40	50	60	80	100
Corresponding spacing	$\mathrm{s} \geq$	[mm]	40	60	65	80	100
Non-cracked concrete							
Member thickness	$\mathrm{h} \geq$	[mm]	140	230	270	340	410
Embedment depth	$\mathrm{h}_{\text {nom }} \geq$	[mm]	80	120	150	200	220
Minimum spacing	$\mathrm{S}_{\text {min }}$	[mm]	40	50	60	80	100
Corresponding edge distance	$c \geq$	[mm]	40	70	80	100	130
Minimum edge distance	$\mathrm{C}_{\text {min }}$	[mm]	40	50	60	80	100
Corresponding spacing	$\mathrm{s} \geq$	[mm]	40	145	160	160	235

Best case minimum member thickness and embedment depth with required minimum edge distance and spacing (borehole condition 1)

Anchor size			M8	M10	M12	M16	M20
Cracked concrete							
Member thickness	$\mathrm{h} \geq$	[mm]	120	120	120	196	200
Embedment depth	$\mathrm{h}_{\text {nom }} \geq$	[mm]	60	60	60	96	100
Minimum spacing	$\mathrm{S}_{\text {min }}$	[mm]	40	50	60	80	100
Corresponding edge distance	$c \geq$	[mm]	40	100	140	135	215
Minimum edge distance	$\mathrm{c}_{\text {min }}=$	[mm]	40	60	90	80	125
Corresponding spacing	$\mathrm{s} \geq$	[mm]	40	160	220	235	365
Non-cracked concrete							
Member thickness	$\mathrm{h} \geq$	[mm]	120	120	120	196	200
Embedment depth	$\mathrm{h}_{\text {nom }} \geq$	[mm]	60	60	60	96	100
Minimum spacing	$\mathrm{s}_{\text {min }}$	[mm]	40	50	60	80	100
Corresponding edge distance	$c \geq$	[mm]	50	145	200	190	300
Minimum edge distance	$\mathrm{C}_{\text {min }}$	[mm]	40	80	115	110	165
Corresponding spacing	$s \geq$	[mm]	65	240	330	310	495

Minimum edge distance and spacing - Explanation

Minimum edge and spacing geometrical requirements are determined by testing the installation conditions in which two anchors with a given spacing can be set close to an edge without forming a crack in the concrete due to tightening torque.

The HIT-Z boundary conditions for edge and spacing geometry can be found in the tables to the left. If the embedment depth and slab thickness are equal to or greater than the values in the table, then the edge and spacing values may be utilized.

Annex 2

No in-principle comment/ no comment from ASD and CEDD

Re：［Structural Appraisal Report］Planning Application No．A／K9／287－Portion of Upper Deck，Hung Hom（North）Ferry

 Pier，Hung Hom，Kowloon```
```

wongchd@archsd.gov.hk [wongchd@archsd.gov.hk](mailto:wongchd@archsd.gov.hk)

```
```

```
```

wongchd@archsd.gov.hk [wongchd@archsd.gov.hk](mailto:wongchd@archsd.gov.hk)

```
```

收件者：Cheng Endy
副本 ：makyka＠archsd．gov．hk
Dear Endy，
We spoke just now and please find our SE＇s response in below for your further handling．Thanks．
Your preceding email and the supplementary drawings and calculations from Mr James Lo of the RSE dated 23．5．2024．
Please be advised that，on the basis of curtailed checking，our SE have no further comment on the maintenance aspect of the existing building structure under ArchSD＇s ambit arisen due to the latest Structural Appraisal Report endorsed by the Registered Structural Engineer（RSE），Wong Shing Tsang．

Please note that we only providing technical advice on the design submission of the captioned works．We do not assume to take up any supervision／auditing role on the actual works done．The applicant is required to appoint a Registered Structural Engineer（RSE）to ensure that the design and supervision requirements set out under the Building Ordinance（and subsidiary regulations made thereunder and any amendments thereto），other relevant statutory requirements，standards／specifications（e．g．ArchSD General Specification）and relevant codes of practice are complied with in the design and construction of the structural works．The appointed RSE shall also verify the actual site conditions against the design assumptions prior to construction，and shall certify that the completed works have been carried out in accordance with the design and are，in his opinion，structurally safe．

Regards，
Alex Wong
PSM／KC－S，ArchSD
27732601

From：＂Cheng Endy＂＜endydespace＠gmail．com＞
To：Chi Hung WONG／ARCHSD／HKSARG＠ARCHSD
Date：23／05／2024 16：26
Subject：Fwd：［Structural Appraisal Report］Planning Application No．A／K9／287－Portion of Upper Deck，Hung Hom（North）Ferry Pier，Hung Hom，Kowloon

## －－－－－－－－－Forwarded message

## 寄件者：James Lo

Date：2024年5月23日週四下午4：23
Subject：Re：［Structural Appraisal Report］Planning Application No．A／K9／287－Portion of Upper Deck，Hung Hom（North）Ferry Pier，Hung Hom， Kowloon
To：＜makyka＠archsd．gov．hk＞
Cc：

## Dear Sir，

Please find the attached revised report and drawings for your reference according to the previous phone conversation．
The anchor bolts connection is revised to HIT－Z－R M20 with HIT－HY－200－R injection adhesive．Besides，the design loading of finishing and service is also stated in the introduction of the report．
＿report．pdf

## －

Best Regards，
James Lo

## S．T．Wong \＆Partners Limited

Tel：2625－1776 Fax：2467－9618
Address：Flat B，8／F，Lee May Building，788－790 Nathan Road，Kowloon［attachment＂AA－S－02．pdf＂deleted by Chi Hung
WONG／ARCHSD／HKSARG］［attachment＂AA－S－03．pdf＂deleted by Chi Hung WONG／ARCHSD／HKSARG］［attachment＂AA－S－01．pdf＂deleted by Chi Hung WONG／ARCHSD／HKSARG］
［Structural Appraisal Report］Planning Application No．A／K9／287－Portion of Upper Deck，Hung Hom（North）Ferry Pier， Hung Hom，Kowloon
rwhso＠cedd．gov．hk＜rwhso＠cedd．gov．hk＞2024年5月24日 上午11：49
收件者：Cheng Endy
副本：

Dear Endy，
We have no in－principle comment on the proposal，please find my advisory comments from marine engineering aspects：
－Our curtailed checking only focused on the basic principles of approach in the proposal and no attempt has been made to verify the accuracies in your submissions which should be subjected to your own in－house checking and scrutiny／the detailed examination on all aspects by the project office and the independent checking engineer．
－It is noted in your report that the structural integrity and stability of the column and pile of the existing pier will not be adversely affected by the proposed works in due course；and
－Please consult us again for any amendment in your design in the future and make sure that your design is in accordance with the latest Port Works Design Manual．
Thanks．
Best Regards，
Rosita So
E／D1
Port Works Division，CEDD
Office Tel： 27625531


[^0]:    a) Hilti anchor rod HIT-Z-F: M16 and M20

